Bordifications of cubings

Dan Guralnik (joint with Uri Bader)

dan.guralnik@vanderbilt.edu

Vanderbilt University
Mathematics Department
Cubings

Definition: A cubing is a simply-connected non-positively curved cube complex. The piecewise Euclidean path pseudometric on a cubing X is a complete CAT(0) metric (by Bridson's theorem) if either –

1. X is finite-dimensional, or
2. X is locally finite.

As a result, in both cases X has different bordications attached to it, e.g.:

Visual boundaries: cone, Tits, ne;

Combinatorial boundaries: cube, Roller.
Cubings

Definition: A cubing is a simply-connected non-positively curved cube complex.
Cubings

Definition: A cubing is a simply-connected non-positively curved cube complex.

The piecewise Euclidean path pseudometric on a cubing X is a complete CAT(0) metric (by Bridson’s theorem) if either –
Cubings

Definition: A cubing is a simply-connected non-positively curved cube complex.

The piecewise Euclidean path pseudometric on a cubing X is a complete CAT(0) metric (by Bridson’s theorem) if either –

- X is finite-dimensional, or
Cubings

Definition: A cubing is a simply-connected non-positively curved cube complex.

The piecewise Euclidean path pseudometric on a cubing X is a complete CAT(0) metric (by Bridson’s theorem) if either –

- X is finite-dimensional, or
- X is locally finite.
Cubings

Definition: A cubing is a simply-connected non-positively curved cube complex.

The piecewise Euclidean path pseudometric on a cubing X is a complete $\text{CAT}(0)$ metric (by Bridson’s theorem) if either –

- X is finite-dimensional, or
- X is locally finite.

As a result, in both cases X has different bordifications attached to it, e.g.:
Cubings

Definition: A cubing is a simply-connected non-positively curved cube complex.

The piecewise Euclidean path pseudometric on a cubing X is a complete CAT(0) metric (by Bridson’s theorem) if either –

- X is finite-dimensional, or
- X is locally finite.

As a result, in both cases X has different bordifications attached to it, e.g.:

- **Visual boundaries:**
Cubings

Definition: A cubing is a simply-connected non-positively curved cube complex.

The piecewise Euclidean path pseudometric on a cubing X is a complete CAT(0) metric (by Bridson’s theorem) if either –

- X is finite-dimensional, or
- X is locally finite.

As a result, in both cases X has different bordifications attached to it, e.g.:

- Visual boundaries: cone,
Cubings

Definition: A cubing is a simply-connected non-positively curved cube complex.

The piecewise Euclidean path pseudometric on a cubing X is a complete CAT(0) metric (by Bridson’s theorem) if either –

- X is finite-dimensional, or
- X is locally finite.

As a result, in both cases X has different bordifications attached to it, e.g.:

- **Visual boundaries:** cone, Tits,
Cubings

Definition: A cubing is a simply-connected non-positively curved cube complex.

The piecewise Euclidean path pseudometric on a cubing X is a complete CAT(0) metric (by Bridson’s theorem) if either –

- X is finite-dimensional, or
- X is locally finite.

As a result, in both cases X has different bordifications attached to it, e.g.:

- **Visual boundaries:** cone, Tits, fine;
- **Combinatorial boundaries:**
Cubings

Definition: A cubing is a simply-connected non-positively curved cube complex.

The piecewise Euclidean path pseudometric on a cubing X is a complete CAT(0) metric (by Bridson’s theorem) if either –

- X is finite-dimensional, or
- X is locally finite.

As a result, in both cases X has different bordifications attached to it, e.g.:

- **Visual boundaries:** cone, Tits, fine;
- **Combinatorial boundaries:** cube,
Cubings

Definition: A cubing is a simply-connected non-positively curved cube complex.

The piecewise Euclidean path pseudometric on a cubing X is a complete CAT(0) metric (by Bridson’s theorem) if either –

- X is finite-dimensional, or
- X is locally finite.

As a result, in both cases X has different bordifications attached to it, e.g.:

- **Visual boundaries:** cone, Tits, fine;
- **Combinatorial boundaries:** cube, Roller.
Some results
Some results

- **Adams-Ballman**: An amenable isometry group of a proper CAT(0) space either fixes a point on the (cone) boundary or stabilizes a flat.
Some results

- **Adams-Ballman:** An amenable isometry group of a proper CAT(0) space either fixes a point on the (cone) boundary or stabilizes a flat.

- **Caprace** Characterized amenable subgroups of CAT(0) groups as subgroups fixing points of the fine boundary.
Some results

• **Adams-Ballman:** An amenable isometry group of a proper CAT(0) space either fixes a point on the (cone) boundary or stabilizes a flat.

• **Caprace** Characterized amenable subgroups of CAT(0) groups as subgroups fixing points of the fine boundary.

• **Ballman-Buyalo:** If a Tits boundary of a CAT(0) group G has diameter greater than 2π then G has rank-1 elements.
Some results

- **Adams-Ballman:** An amenable isometry group of a proper CAT(0) space either fixes a point on the (cone) boundary or stabilizes a flat.

- **Caprace** Characterized amenable subgroups of CAT(0) groups as subgroups fixing points of the fine boundary.

- **Ballman-Buyalo:** If a Tits boundary of a CAT(0) group G has diameter greater than 2π then G has rank-1 elements.

- **Swenson-Papasoglu:** Improved the bound to $3\pi/2$, and much more.
Hyperplanes

Theorem (Sageev):

A hyperplane \(W \) of a cubing \(X \) does not self-intersect, is closed and convex, is itself a cubing, separates \(X \) into two convex components with common boundary \(W \).
Hyperplanes

Midcubes, hyperplanes:
Hyperplanes

Midcubes, hyperplanes:
Hyperplanes

Midcubes, hyperplanes:

Theorem (Sageev):
A hyperplane W of a cubing X does not self-intersect, is closed and convex, is itself a cubing, separates X into two convex components with common boundary W.
Hyperplanes

Midcubes, hyperplanes:

Theorem (Sageev): A hyperplane W of a cubing X
Hyperplanes

Midcubes, hyperplanes:

Theorem (Sageev): A hyperplane W of a cubing X

- does not self-intersect,
Hyperplanes

Midcubes, hyperplanes:

Theorem (Sageev): A hyperplane W of a cubing X

- does not self-intersect,
- is closed and convex,
Hyperplanes

Midcubes, hyperplanes:

Theorem (Sageev): A hyperplane W of a cubing X

- does not self-intersect,
- is closed and convex,
- is itself a cubing,
Hyperplanes

Midcubes, hyperplanes:

Theorem (Sageev): A hyperplane W of a cubing X

- does not self-intersect,
- is closed and convex,
- is itself a cubing,
- separates X into two convex components with common boundary W.
Halfspace system

Definition:
The halfspace system $H(X)$ of a cubing X is the set of all complementary components of hyperplanes (halfspaces) in X. We also throw in the empty set and X.

$H(X)$ is viewed as a poset (w.r.t. inclusion) endowed with the order-reversing involution $a \mapsto a_{\mathcal{A}}$ where $a_{\mathcal{A}} = X - a$.

Definition (Roller):
H is said to be \mathcal{A}-dimensional, if H contains no infinite transverse family of halfspaces.

From now on we only work with \mathcal{A}-dimensional cubings.
Halfspace system

• Definition:

The halfspace system $H(X)$ of a cubing X is the set of all complementary components of hyperplanes (halfspaces) in X. We also throw in the empty set and X. $H(X)$ is viewed as a poset (w.r.t. inclusion) endowed with the order-reversing involution $a \mapsto \overline{a}$ where $a \mapsto X \setminus a$.

Definition (Roller): H is said to be d-dimensional, if H contains no infinite transverse family of halfspaces. From now on we only work with d-dimensional cubings.
Halfspace system

- **Definition:** The halfspace system $H(X)$ of a cubing X is the set of all complementary components of hyperplanes (halfspaces) in X.

We also throw in the empty set and X. $H(X)$ is viewed as a poset (w.r.t. inclusion) endowed with the order-reversing involution $a \mapsto \overline{a}$ where $a \mapsto X \setminus a$.

Definition (Roller): H is said to be ℓ-dimensional, if H contains no infinite transverse family of halfspaces.

From now on we only work with ℓ-dimensional cubings.
Halfspace system

- **Definition:** The halfspace system $H(X)$ of a cubing X is the set of all complementary components of hyperplanes (halfspaces) in X. We also throw in the empty set and X.
Halfspace system

- **Definition:** The halfspace system $H(X)$ of a cubing X is the set of all complementary components of hyperplanes (halfspaces) in X. We also throw in the empty set and X.

- $H(X)$ is viewed as a poset (w.r.t. inclusion)
Halfspace system

- **Definition:** The halfspace system $H(X)$ of a cubing X is the set of all complementary components of hyperplanes (halfspaces) in X. We also throw in the empty set and X.

- $H(X)$ is viewed as a poset (w.r.t. inclusion) endowed with the order-reversing involution $a \mapsto a^*$ where $a^* = X - \overline{a}$.

- **Definition (Roller):** $H = H(X)$ is said to be ω-dimensional, if H contains no infinite transverse family of halfspaces.
Halfspace system

- **Definition:** The halfspace system $H(X)$ of a cubing X is the set of all complementary components of hyperplanes (halfspaces) in X. We also throw in the empty set and X.

- $H(X)$ is viewed as a poset (w.r.t. inclusion) endowed with the order-reversing involution $a \mapsto a^*$ where $a^* = X - \bar{a}$.

- **Definition (Roller):** $H = H(X)$ is said to be ω-dimensional, if H contains no infinite transverse family of halfspaces.

- From now on we only work with ω-dimensional cubings.
Reconstruction (Sageev-Roller)
Reconstruction (Sageev-Roller)

- Definition (Roller):

A family H is coherent, if no $a, b \in s$ satisfy $a \leq b$. A maximal coherent family is an ultralter.

Denote the set of all ultralters by H. Construct $X_0 \neq H$ by $v \neq (v')$ where $(v') = \{a \in H | v \leq a\}$. Im($\ll$)s an almost-equality class in H – the unique almost-equality class of all ultralters not containing infinite descending chains. We call this class the principal class.
Reconstruction (Sageev-Roller)

- **Definition (Roller):** A family $\alpha \subset H$ is *coherent*, if no $a, b \in \alpha$ satisfy $a \leq b^*$.
Reconstruction (Sageev-Roller)

- **Definition (Roller):** A family $\alpha \subset H$ is coherent, if no $a, b \in \alpha$ satisfy $a \leq b^*$. A maximal coherent family is an ultrafilter.
Reconstruction (Sageev-Roller)

- **Definition (Roller):** A family $\alpha \subseteq H$ is *coherent*, if no $a, b \in \alpha$ satisfy $a \leq b^*$. A maximal coherent family is an *ultrafilter*. Denote the set of all ultrafilters by H°.
Reconstruction (Sageev-Roller)

- **Definition (Roller):** A family $\alpha \subset H$ is *coherent*, if no $a, b \in \alpha$ satisfy $a \leq b^*$. A maximal coherent family is an *ultrafilter*. Denote the set of all ultrafilters by H°.

- **Construct** $X^0 \to H^\circ$ by $\nu \mapsto \pi(\nu)$ where

 \[
 \pi(\nu) = \{a \in H \mid \nu \in a\}
 \]
Reconstruction (Sageev-Roller)

- **Definition (Roller):** A family $\alpha \subset H$ is *coherent*, if no $a, b \in \alpha$ satisfy $a \leq b^*$. A maximal coherent family is an *ultrafilter*. Denote the set of all ultrafilters by H°.

- **Construct** $X^0 \rightarrow H^\circ$ by $\nu \mapsto \pi(\nu)$ where
 \[
 \pi(\nu) = \{ a \in H \mid \nu \in a \}
 \]

$\text{Im}(\pi)$ fills an almost-equality class in H° –
Reconstruction (Sageev-Roller)

- **Definition (Roller):** A family $\alpha \subset H$ is *coherent*, if no $a, b \in \alpha$ satisfy $a \leq b^*$. A maximal coherent family is an *ultrafilter*. Denote the set of all ultrafilters by H°.

- **Construct** $X^0 \rightarrow H^\circ$ by $v \mapsto \pi(v)$ where

$$
\pi(v) = \{ a \in H \mid v \in a \}
$$

$\text{Im}(\pi)$ fills an almost-equality class in H° – the unique almost-equality class of all ultrafilters not containing infinite descending chains.
Reconstruction (Sageev-Roller)

- **Definition (Roller):** A family $\alpha \subset H$ is **coherent**, if no $a, b \in \alpha$ satisfy $a \leq b^*$. A maximal coherent family is an **ultrafilter**. Denote the set of all ultrafilters by H°.

- **Construct** $X^0 \to H^\circ$ by $\nu \mapsto \pi(\nu)$ where

 $$\pi(\nu) = \{ a \in H \mid \nu \in a \}$$

$\text{Im}(\pi)$ fills an almost-equality class in H° – the unique almost-equality class of all ultrafilters not containing infinite descending chains. We call this class **the principal class** Π.
Reconstruction (cntd.)

Construct a cube complex as follows: vertex set: \(H \), edge set: \(\{x \neq y \mid \text{d}(x, y) \leq 1\} \). Glue one Euclidean square to each \(4 \)-cycle.

Continue inductively, attaching \([0, 1]^d\) to each instance of \(@([0, 1]^d) \).

Theorem (Sageev): The resulting cube complex \(C(H) \) is the disjoint union of cubings. The principal component is naturally isomorphic to \(X \).
Reconstruction (cntd.)

X^1 is reconstructed from H as its dual graph.
Reconstruction (cntd.)

X^1 is reconstructed from H as its dual graph. Construct a cube complex as follows:
Reconstruction (cntd.)

X^1 is reconstructed from H as its dual graph. Construct a cube complex as follows:

- **Vertex set:** H°
Reconstruction (cntd.)

X^1 is reconstructed from H as its dual graph. Construct a cube complex as follows:

- **Vertex set:** H°
- **Edge set:** $\alpha, \beta \in H^\circ$ are joined by an edge iff they differ by one halfspace

Theorem (Sageev):
The resulting cube complex $C(H)$ is the disjoint union of cubings. The principal component is naturally isomorphic to X.
Reconstruction (cntd.)

X^1 is reconstructed from H as its dual graph. Construct a cube complex as follows:

- **Vertex set:** H°
- **Edge set:** $\alpha, \beta \in H^\circ$ are joined by an edge iff they differ by one halfspace
- **2-cubes:** Glue one Euclidean square to fill every 4-cycle

Theorem (Sageev): The resulting cube complex $C(H)$ is the disjoint union of cubings. The principal component is naturally isomorphic to X.

42nd Spring Topology Conference, Milwaukee – p. 7/15
Reconstruction (cntd.)

X^1 is reconstructed from H as its dual graph. Construct a cube complex as follows:

- **Vertex set:** H°
- **Edge set:** $\alpha, \beta \in H^\circ$ are joined by an edge iff they differ by one halfspace
- **2-cubes:** Glue one Euclidean square to fill every 4-cycle
- **Continue inductively,** attaching $[0, 1]^d$ to fill each instance of $\partial[0, 1]^d$.

Theorem (Sageev): The resulting cube complex $C(H)$ is the disjoint union of cubings. The principal component is naturally isomorphic to X.

42nd Spring Topology Conference, Milwaukee – p. 7/15
Reconstruction (cntd.)

X^1 is reconstructed from H as its dual graph. Construct a cube complex as follows:

- **Vertex set:** H°
- **Edge set:** $\alpha, \beta \in H^\circ$ are joined by an edge iff they differ by one halfspace
- **2-cubes:** Glue one Euclidean square to fill every 4-cycle
- Continue inductively, attaching $[0, 1]^d$ to fill each instance of $\partial[0, 1]^d$.

Theorem (Sageev): The resulting cube complex $C(H)$ is the disjoint union of cubings. The principal component is naturally isomorphic to X.
Reconstruction (cntd.)

X^1 is reconstructed from H as its dual graph. Construct a cube complex as follows:

- **Vertex set:** H°
- **Edge set:** $\alpha, \beta \in H^\circ$ are joined by an edge iff they differ by one halfspace
- **2-cubes:** Glue one Euclidean square to fill every 4-cycle
- **Continue inductively,** attaching $[0, 1]^d$ to fill each instance of $\partial[0, 1]^d$.

Theorem (Sageev): The resulting cube complex $C(H)$ is the disjoint union of cubings. The principal component is naturally isomorphic to X.
Roller and cube boundaries

Topologize H° with the product topology.
Roller and cube boundaries

Topologize H° with the product topology.

- The cube boundary of X is the union of non-principal components of $C(H)$.
Roller and cube boundaries

Topologize H° with the product topology.

- The cube boundary of X is the union of non-principal components of $C(H)$.
- The Roller boundary $\mathcal{R}H$ of X is the set of components of $C(H)$.
Roller and cube boundaries

Topologize H° with the product topology.

- The cube boundary of X is the union of non-principal components of $C(H)$.
- The Roller boundary $\mathcal{R}H$ of X is the set of components of $C(H)$.

Theorem (G.): $\mathcal{R}H$ is a meet semilattice with respect to the partial ordering defined by

$$A \leq B \iff B \subseteq \bar{A} \iff B \cap \bar{A} \neq \emptyset.$$
Roller and cube boundaries

Topologize H° with the product topology.

- The cube boundary of X is the union of non-principal components of $C(H)$.
- The Roller boundary $\mathcal{R}H$ of X is the set of components of $C(H)$.

Theorem (G.): $\mathcal{R}H$ is a meet semilattice with respect to the partial ordering defined by

\[A \leq B \iff B \subseteq \overline{A} \iff B \cap \overline{A} \neq \emptyset. \]

Moreover, there is a natural system of commuting projections $\{ A \to B \}_{A \leq B}$ continuously extending to the corresponding closures.
Example (1)
Boundary decomposition map
Boundary decomposition map

- **Theorem (G.):** Suppose X is co-compact. The function $\rho : \partial_\infty X \to \mathcal{R}H$ defined by setting $\rho(\xi)$ to equal the smallest element of $\mathcal{R}H$ containing the limit of a sequence of vertices of X converging to ξ, is well defined and

$$\rho^{-1}(A) = \bigcup_{B \leq A} \rho^{-1}(B)$$

for all $A \in \text{Im}(\rho)$.
Boundary decomposition map

- **Theorem (G.):** Suppose X is co-compact. The function $\rho : \partial_\infty X \to RH$ defined by setting $\rho(\xi)$ to equal the smallest element of RH containing the limit of a sequence of vertices of X converging to ξ, is well defined and

$$\rho^{-1}(A) = \bigcup_{B \leq A} \rho^{-1}(B)$$

for all $A \in \text{Im}(\rho)$.

- **Note:** For a general cubing ρ is not necessarily surjective.
Suppose X admits a geometric action by a group G. Is surjective? A positive answer will imply, for example, that a finitely generated subgroup of G is virtually abelian iff the image of its limit set in the Roller boundary is finite.

Theorem (G.): Suppose the cubing X is co-compact. Let \mathcal{C} be the comparability graph on $\text{Im}(\mathcal{C})$. Then the components of the Tits boundary ∂T_X correspond to components of \mathcal{C} under \mathcal{C}.

Remark: Together with a positive answer to the above, this gets us closer to the goal of studying splittings over virtually abelian subgroups using the CAT(0) boundary: look for invariant nested families of finite cuts in X.
Boundary decomposition map

- **Question:** Suppose X admits a geometric action by a group G. Is ρ surjective?
Boundary decomposition map

• **Question:** Suppose X admits a geometric action by a group G. Is ρ surjective? A positive answer will imply, for example, that a finitely generated subgroup of G is virtually abelian iff the image of its limit set in the Roller boundary is finite.
Boundary decomposition map

- **Question:** Suppose X admits a geometric action by a group G. Is ρ surjective? A positive answer will imply, for example, that a finitely generated subgroup of G is virtually abelian iff the image of its limit set in the Roller boundary is finite.

- **Theorem (G.):** Suppose the cubing X is co-compact. Let Γ be the comparability graph on $\text{Im}(\rho)$. Then the components of the Tits boundary $\partial_T X$ correspond to components of Γ under ρ.

Remark: Together with a positive answer to the above, this gets us closer to the goal of studying splittings over virtually abelian subgroups using the CAT(0) boundary: look for invariant nested families of finite cuts in $\partial_T X$.

42nd Spring Topology Conference, Milwaukee – p. 11/15
Boundary decomposition map

• **Question:** Suppose X admits a geometric action by a group G. Is ρ surjective? A positive answer will imply, for example, that a finitely generated subgroup of G is virtually abelian iff the image of its limit set in the Roller boundary is finite.

• **Theorem (G.):** Suppose the cubing X is co-compact. Let Γ be the comparability graph on $\text{Im}(\rho)$. Then the components of the Tits boundary $\partial_T X$ correspond to components of Γ under ρ.

• **Remark:** Together with a positive answer to the above, this gets us closer to the goal of studying splittings over virtually abelian subgroups using the CAT(0) boundary: look for invariant nested families of finite cuts in Γ.
Theorem (Roller):
The family of 1-skeleta of cubings is precisely the family of median graphs.

Intervals defined by pairs of vertices in a graph:
$I(u; v) = \{t \mid d(u; t) + d(t; v) = d(u; v)\}$.

A median graph is a graph in which $I(u; v) \setminus I(v; w) \setminus I(u; w)$ is a point, for all vertices $u; v; w$.
More elegant description? (1)

Theorem (Roller): The family of 1-skeleta of cubings is precisely the family of median graphs.
More elegant description? (1)

Theorem (Roller): The family of 1-skeleta of cubings is precisely the family of median graphs.

- Intervals defined by pairs of vertices in a graph:

\[I(u, v) = \{ t \mid d(u, t) + d(t, v) = d(u, v) \} . \]
More elegant description? (1)

Theorem (Roller): The family of 1-skeleta of cubings is precisely the family of median graphs.

- Intervals defined by pairs of vertices in a graph:
 \[
 I(u, v) = \{ t \mid d(u, t) + d(t, v) = d(u, v) \} .
 \]

- A median graph is a graph in which
 \[
 I(u, v) \cap I(v, w) \cap I(u, w)
 \]
 is a point, for all vertices \(u, v, w \).
Median operation

\[\text{med}(u; v; w) = (u \lor v) \land (u \lor w) \land (v \lor w) \]
Median operation

- $C(H)^1$ has a median operation:
Median operation

- \(C(H)^1 \) has a median operation:
 \[
 \text{med}(u, v, w) = (u \cap v) \cup (u \cap w) \cup (v \cap w).
 \]
Median operation

- $C'(H)^1$ has a median operation:
 \[\text{med}(u, v, w) = (u \cap v) \cup (u \cap w) \cup (v \cap w). \]
- The median property:
Median operation

- **$C(H)^1$ has a median operation:**
 \[med(u, v, w) = (u \cap v) \cup (u \cap w) \cup (v \cap w) . \]

- **The median property:** For ultrafilters u, v, w,
 \[I(u, v) \cap I(u, w) \cap I(v, w) = \{med(u, v, w)\} . \]
Median operation

- \(C(H)^1 \) has a median operation:
 \[
 \text{med}(u, v, w) = (u \cap v) \cup (u \cap w) \cup (v \cap w) .
 \]

- The median property: For ultrafilters \(u, v, w \),
 \[
 I(u, v) \cap I(u, w) \cap I(v, w) = \{ \text{med}(u, v, w) \} .
 \]
Median operation

- **$C(H)^1$ has a median operation:**
 \[
 \text{med}(u, v, w) = (u \cap v) \cup (u \cap w) \cup (v \cap w).
 \]

- **The median property:** For ultrafilters u, v, w,
 \[
 I(u, v) \cap I(u, w) \cap I(v, w) = \{\text{med}(u, v, w)\}.
 \]
Median operation

- \(C(H)^1 \) has a median operation:
 \[
 \text{med}(u, v, w) = (u \cap v) \cup (u \cap w) \cup (v \cap w) .
 \]
- The median property: For ultrafilters \(u, v, w \),
 \[
 I(u, v) \cap I(u, w) \cap I(v, w) = \{ \text{med}(u, v, w) \} .
 \]
Median operation

- $C(H)^1$ has a median operation:
 \[\text{med}(u, v, w) = (u \cap v) \cup (u \cap w) \cup (v \cap w). \]

- The median property: For ultrafilters u, v, w,
 \[I(u, v) \cap I(u, w) \cap I(v, w) = \{ \text{med}(u, v, w) \}. \]
Median operation

- $C(H)^1$ has a median operation:
 \[
 med(u, v, w) = (u \cap v) \cup (u \cap w) \cup (v \cap w).
 \]
- **The median property:** For ultrafilters u, v, w,
 \[
 I(u, v) \cap I(u, w) \cap I(v, w) = \{med(u, v, w)\}.
 \]
Example (2)
Example (2)

Consider the plane with the median metric (ℓ_1 metric), fix a point p_0, and construct the metric bordification:
Example (2)

Consider the plane with the median metric (ℓ_1 metric), fix a point p_0, and construct the metric bordification:

$$p \mapsto f_p(\cdot) = d(\cdot, p) - d(p, p_0).$$
Example (2)

Consider the plane with the median metric (ℓ_1 metric), fix a point p_0, and construct the metric bordification:

$$ p \mapsto f_p(\cdot) = d(\cdot, p) - d(p, p_0). $$

Write $p = (a, b)$, $p_0 = (0, 0)$ and $q = (x, y)$.
Example (2)

Consider the plane with the median metric (ℓ_1 metric), fix a point p_0, and construct the metric bordification:

$$p \mapsto f_p(\cdot) = d(\cdot, p) - d(p, p_0).$$

Write $p = (a, b)$, $p_0 = (0, 0)$ and $q = (x, y)$. If $a \gg x$ and $b \gg y$,

$$f_p(q) = |a - x| + |b - y| - |a| - |b|$$

$$= -x - y,$$

which is independent of a and b.
Example (2)

Consider the plane with the median metric (ℓ_1 metric), fix a point p_0, and construct the metric bordification:

$$p \mapsto f_p(\cdot) = d(\cdot, p) - d(p, p_0).$$

Write $p = (a, b)$, $p_0 = (0, 0)$ and $q = (x, y)$. If $a \gg x$ and $y \sim b$,

$$f_p(q) = |a - x| + |b - y| - |a| - |b|$$

$$= -x + (|b - y| - |b|),$$

which becomes independent of b if considered modulo bounded functions!
More elegant description? (2)
Theorem (Bader-G.): The metric compactification of the 1-skeleton of a cubing coincides with its cube boundary compactification. The identification map is a bi-Lipschitz homeomorphism putting boundedness classes in one-to-one correspondence with almost-equality classes. In particular, the Roller boundary of X is the quotient of the metric compactification of X^1 by bounded functions.
More elegant description? (2)

Theorem (Bader-G.): The metric compactification of the 1-skeleton of a cubing coincides with its cube boundary compactification. The identification map is a bi-Lipschitz homeomorphism putting boundedness classes in one-to-one correspondence with almost-equality classes. In particular, the Roller boundary of X is the quotient of the metric compactification of X^1 by bounded functions.
More elegant description? (2)

Theorem (Bader-G.): The metric compactification of the 1-skeleton of a cubing coincides with its cube boundary compactification. The identification map is a bi-Lipschitz homeomorphism putting boundedness classes in one-to-one correspondence with almost-equality classes. In particular, the Roller boundary of X is the quotient of the metric compactification of X^1 by bounded functions.