
TOPOLOGICAL PROPERTIES OF REFLECTIONLESS
JACOBI MATRICES

CHRISTIAN REMLING

Abstract. We study the topological properties of spaces of re-
flectionless Jacobi matrices.

1. Introduction

This paper is part of my attempts to achieve a better understand-
ing of the absolutely continuous spectrum of Jacobi matrices and, in
particular, reflectionless operators. This program was begun in [12];
please also see [9, 10, 11] for subsequent work along these lines.

A Jacobi matrix is a difference operator of the following type:

(Ju)n = anun+1 + an−1un−1 + bnun

Here, an ≥ 0 and bn ∈ R, and we also always assume that a, b are
bounded sequences.

Alternatively, one can represent J by a tridiagonal matrix with re-
spect to the standard basis of `2(Z):

J =


. . . . . . . . .

a−2 b−1 a−1

a−1 b0 a0

a0 b1 a1

. . . . . . . . .


In this paper, we will study spaces of Jacobi matrices, not individual
operators. We will write

JR = {J : ‖J‖ ≤ R}
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2 CHRISTIAN REMLING

for the set of Jacobi matrices satisfying a given bound on their operator
norms. On these spaces, we then use the following metric:

(1.1) d(J, J ′) =
∞∑

n=−∞

2−|n| (|an − a′n|+ |bn − b′n|)

This is a natural choice; for example, the topology induced by d on
JR coincides with the weak and strong operator topologies, and, as we
will see, d interacts well with natural modes of convergence of other
quantities. Moreover, (JR, d) is a compact space.

A Jacobi matrix J is called reflectionless on a Borel set M ⊂ R if

Re gn(t) = 0 for Lebesgue almost every t ∈M
for all n ∈ Z. Here, gn(z) = 〈δn, (J − z)−1δn〉 is the Green function of
J at site n, and gn(t) = limy→0+ gn(t+ iy); this limit exists for almost
every t ∈ R. See [12] for more information on reflectionless operators
and why they are important.

The set of reflectionless (on M) Jacobi matrices will be denoted by
R(M). We will be particularly interested in the subspaces

R0(K) = {J ∈ R(K) : σ(J) ⊂ K}
for compact sets K ⊂ R. Here, σ(J) denotes the spectrum of J ; if K is
an essentially closed set (that is, it intersects an arbitrary open interval
either in a set of positive Lebesgue measure or not at all), then in fact
σ(J) = K for all J ∈ R0(K).

Throughout this paper, we make the following

basic assumption: The set K is of positive Lebesgue measure.

The case |K| = 0 is of no interest at all in this context because then the
condition of being reflectionless on K becomes vacuous. More to the
point, we avoid awkward supplements to our statements if we assume
that |K| > 0. See also the final section of [10] for a discussion of these
issues.

The spaces R0(K) are themselves compact if endowed with the met-
ric d from (1.1). Moreover, the shift S acts as a homeomorphism
on R0(K), so we obtain (topological) dynamical systems (R0(K), S).
Here, we define the action of S on a Jacobi matrix J in the obvious
way, by shifting its coefficients an, bn.

These dynamical systems (R0(K), S) are of considerable interest.
For instance, they provide natural examples of systems with absolutely
continuous spectrum and are thus relevant to the Kotani-Last question.
For more background information on these topics, see [3, 5].
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For simple choices of K, the spaces R0(K) consist of well known
classes of Jacobi matrices. If K is a single interval, then R0(K) only
has one element, and this Jacobi matrix has constant coefficients; if
specifically K = [−2, 2], then we obtain free Jacobi matrix (an = 1,
bn = 0). If we add isolated points, that is,

K = [−2, 2] ∪ {x1, . . . , xN},
then the members of R0(K) are usually referred to as solitons (with
eigenvalues given by a subset of {x1, . . . , xN}, possibly the empty set).
If K is a finite gap set (a disjoint union of finitely many compact
intervals of positive length), then R0(K) contains exactly the finite
gap Jacobi matrices with spectrum K.

The dynamics of (R0(K), S) are very well understood in these cases.
For example, if K is a finite gap set whose complement R \K has N
bounded components (referred to as gaps in the sequel), then (R0(K), S)
is isomorphic to (TN , Ta), a translation on the N -dimensional torus; in
fact, rather explicit information is available on both the isomorphism
and a from Ta. These finite gap systems have been studied very exten-
sively.

More recent work by Sodin and Yuditskii [13] establishes the anal-
ogous result for certain sets K with infinitely many gaps. For general
sets K with infinitely many gaps, not much is known at present.

In this paper, I will make no attempt to study R0(K) as a dynamical
system. Instead, I will settle for the more modest assignment of trying
to understand R0(K) as a topological space but I will make a point of
attacking this question for completely general sets K.

Our basic tool will be a representation of R0(K) as a fibered space
over a (usually: infinite-dimensional) torus.

It is perhaps useful to state this more formally. As above, let N ∈
N0 ∪ {∞} be the number of bounded components (gaps) of R \ K.
Denote the torus of this dimension by T = TN ; if N =∞, then this is
defined as the infinite Cartesian product T∞ = SN of countably many
copies of the unit circle S, endowed with the product topology. Notice
that T is a compact metrizable space for arbitrary N ∈ N0 ∪ {∞}.

Proposition 1.1. There exists a continuous surjective map

p : R0(K)→ T .

We then call p−1({t}) the fiber over t ∈ T . The formulation of the
Proposition may in fact be slightly misleading in that abstract existence
of p is not really the main point here; rather, we will always work with a
concrete, natural choice for p, which will be properly defined in Section
2.
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Such a representation of R0(K) has been used by many authors;
it appears that these ideas go back to [2], but see also [6, 14]. It
also played a central role in [10, 12], even though somewhat different
terminology was used there (fibered spaces weren’t mentioned). We’ll
review this material in Section 2.

It frequently happens that all fibers are single points, so that R0(K)
is then homeomorphic to T . In general, the following can be said.

Theorem 1.2. The map p from Proposition 1.1 can be chosen so that
it has the following additional property: Let

δ(t) = diam
(
p−1({t})

)
= max{d(J, J ′) : p(J) = p(J ′) = t}.

Then δ is an upper semicontinuous function on T . Moreover, {t ∈ T :
δ(t) = 0} is a dense Gδ set in T .

Fibers may vary wildly, however, and δ is certainly not continuous
in general. It is easy to build examples where the complement {t :
δ(t) > 0} is also dense in T . A good toy model to keep in mind is the
topologist’s sine curve

{(t, sin(1/t)) : 0 < t ≤ π} ∪ {(0, y) : −1 ≤ y ≤ 1},
viewed as a fibered space over [0, π] in the natural way, with p being
the projection onto the x-axis. (This has only one non-trivial fiber, but
of course a simple modification will give a space with non-trivial fibers
on a dense set.)

This model must not be taken too seriously. Indeed, unlike the
topologist’s sine curve, the spaces R0(K) satisfy:

Theorem 1.3. R0(K) is pathwise connected.

This has the following consequence.

Corollary 1.4. If R0(K) can be made an abelian topological group,
then R0(K) is homeomorphic to T .

See [4, Theorem 8.46] for this conclusion. The Corollary seems to be
of some interest here because, as is well known, such a group structure
can be obtained from the dynamics if (R0(K), S) is a minimal system
containing only Jacobi matrices with almost periodic coefficients: one
just extends to all of R0(K) the group structure on an orbit that is
provided by the natural action of Z.

If there are non-trivial fibers, then their effect on the topology of
R0(K) is not easy to understand. The simplest situation where such
non-trivial fibers are present occurs when K has isolated points, and
here the simplest example is provided by sets of the type

(1.2) K = [−2,−1] ∪ {0} ∪ [1, 2],
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say. This K has two gaps, thus T = T2, and it will also be easy to
see that there is exactly one point t0 ∈ T with a non-trivial fiber; this
fiber is homeomorphic to a closed interval. Superficially, just given this
information, it is not even clear if R0(K) is still a topological manifold
(locally homeomorphic to R2).

The effect of such isolated points of K on the topology of R0(K)
is clarified by Theorem 1.5 below. In fact, they have no effect at all:
R0(K) ∼= T2 for the K from (1.2). To formulate such a statement in
precise terms in a general setting, suppose that x0 ∈ K is an isolated
point of a general compact set K, and consider the modified sets

Kt = K ∪ [x0 − t, x0 + t],

where t > 0 is chosen so small that [x0 − t, x0 + t] ∩K = {x0}.

Theorem 1.5. R0(K) and R0(Kt) for t > 0 are homeomorphic.

This addresses the issue we just discussed because that part of the
non-trivial fiber of R0(K) that can be said to correspond to x0 dis-
appears when we consider R0(Kt) for t > 0. (We spoke of a fiber
of R0(K), for convenience, but of course fibers are associated with the
map p : R0(K)→ T and they are not an intrinsic property of the space
R0(K).) See again Section 2 and also Lemma 4.1 for more details on
this.

As a by-product, Theorem 1.5 also clarifies the nature of spaces of
soliton type Jacobi matrices.

Corollary 1.6. Suppose that

K =
N+1⋃
n=1

In

is a disjoint union of N+1 compact intervals In = [an, an+dn], dn ≥ 0,
some of which may be single points. Then R0(K) is homeomorphic to
TN .

Proof. This is well known if all intervals are of positive length. The
general case now follows from Theorem 1.5. �

In particular, if we take K = [−2, 2] ∪̇ {x1, . . . , xN}, so that R0(K)
becomes the spaces of all (classical) solitons whose eigenvalues are a
subcollection of the points x1, . . . , xN , then R0(K) ∼= TN .

So non-trivial fibers need not have any effect on the topology of
R0(K). However, are there examples where something of this sort
happens? I do not know this, and in fact I am unable to answer, at
this point, the following very basic sounding
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Open question: Are there any (compact, positive measure) sets K ⊂
R for which R0(K) is not homeomorphic to a torus?

I believe that these issues deserve further study.

2. R0(K) as a fibered space

In this section, we review material that was discussed in more detail
in [10, 12]. Please refer to these sources for additional information.

Given a reflectionless Jacobi matrix J ∈ R0(K), consider its H func-
tion H(z) = −1/g0(z) and the associated Krein function

ξ(t) =
1

π
lim
y→0+

Im lnH(t+ iy).

Notice, first of all, that Im H(z) > 0 on the upper half plane z ∈ C+ =
{z = x + iy : y > 0}, so H has a holomorphic logarithm on C+ and
we may demand that Im lnH ∈ (0, π) there. By general facts about
Herglotz functions, we now see that the limit defining ξ(t) exists for
Lebesgue almost every t ∈ R, and 0 ≤ ξ ≤ 1. If viewed as an element
of L∞(R), then ξ is uniquely determined by H, and, conversely, we can
recover H from ξ. The following explicit formula holds:

(2.1) H(z) = (z +R) exp

(∫ R

−R

ξ(t) dt

t− z

)
;

here, R > 0 must be chosen so large that ‖J‖ ≤ R, but is otherwise
arbitrary.

The fact that J ∈ R0(K) implies that ξ = 1/2 almost everywhere
on K. This follows because g0 and thus also H are purely imaginary
on this set. Moreover, it is not hard to show (please see [10, 12] for
details) that ξ = 1 to the left of K and ξ = 0 to the right of K, and on
each gap (a, b) ⊂ Kc, the Krein function jumps from 0 to 1 (or not at
all), that is, its restriction to this gap is of the form ξ = χ(µ,b) for some
µ ∈ [a, b].

In other words, the ξ function of a J ∈ R0(K) is uniquely determined
by the collection of its jump points (µj) (one for each gap). Conversely,
if µj ∈ [aj, bj] are given, then there exist Jacobi matrices J ∈ R0(K)
whose ξ functions have these parameters.

These ξ functions do not, in general, provide a complete parametriza-
tion of R0(K); in fact, unless K is a single interval, there are always
distinct Jacobi matrices J ∈ R0(K) that share the same ξ.

To obtain a bijective map from R0(K) onto an enlarged set of spec-
tral data, we write down the Herglotz representation of H(z). This will
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take the form

(2.2) H(z) = z + A+

∫
(−R,R)

dρ(t)

t− z
,

and here A ∈ R and the finite, positive Borel measure ρ are of course
uniquely determined by ξ (since H is). More can be said about ρ. This
measure is of the form

(2.3) dρ = χK dρ+
∑

wjδµj
;

the sum is over those gaps for which µj 6= aj, bj, and wj > 0 for these
j.

The significance of these new data lies in the fact that

ρ = ν+ + ν−

is the sum of the (suitably defined, see [10] for details) half line spectral
measures ν±. Moreover, and this is the key point, the ν+ obtained
in this way are in one-to-one correspondence to the Jacobi matrices
J ∈ R0(K). In particular, we are claiming here that J ∈ R0(K) can
be reconstructed from just one half line spectral measure; this is one
way of expressing the well known fact that reflectionless Jacobi matrices
are already determined if their coefficients are known on an arbitrary
half line.

The correspondence outlined above can be made much more explicit.
The following two facts are crucial:

(1) Every ν+ obtained in this way from a J ∈ R0(K) is of the form

(2.4) dν+ =
1

2

(
dρ+ gχK dρs +

∑
σjwjδµj

)
,

with g ∈ L∞(K), −1 ≤ g ≤ 1, and σj ∈ {−1, 1}. Also, as explained,
dρ and wj = ρ({µj}) are determined by the µj (because H and ξ are).

(2) Conversely, suppose that such data are given. In other words,
suppose that µj ∈ [aj, bj], σj ∈ {−1, 1} (for those j for which µj 6=
aj, bj), and g : K → [−1, 1] is a Borel function. Then, as discussed
above, the µj determine a ξ function which, in turn, yields a unique
H(z) via (2.1). Use this H to obtain a unique Borel measure ρ from
(2.2). This ρ will be of the form (2.3), and thus we may finally define
ν+ by (2.4). Then there exists a unique J ∈ R0(K) whose ν+ is given
by this measure.

Given these observations, it is now convenient to think of this para-
metrization as a bijection J ↔ (µ, σ, g(x)). Here we identify data
(µ, σ, g), (µ′, σ′, g′) that lead to the same ν+. This happens if and
only if µj = µ′j for all j and σj = σ′j for all j with µj 6= aj, bj and
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g = g′ almost everywhere on K with respect to ρs. (In particular, if
ρs(K) = 0, as happens quite frequently, then g becomes irrelevant.)

We equip this collection of data (µ, σ, g) with a metric that corre-
sponds to the weak-∗ topology for the ν+. More precisely, we fix a
metric D0 that induces the weak-∗ topology on the positive Borel mea-
sures λ on [−R,R] with λ([−R,R]) ≤ C, and put

(2.5) D((µ, σ, g), (µ′, σ′, g′)) = D0(ν+, ν
′
+),

where the measures ν+, ν
′
+ are constructed from the given data as de-

scribed above.
This representation of R0(K) provides a homeomorphism onto a

suitably defined space Y = Y (K) of spectral data y = (µ, σ, g). More
precisely, let Y (K) be the set of equivalence classes of such data y =
(µ, σ, g). In other words, y = (µ, σ, g) is admissible as a set of data here
if µj ∈ [aj, bj] and we are given a σj = ±1 for each j with µj 6= aj, bj,
and also a Borel function −1 ≤ g ≤ 1 on K. Two such data y, y′ are
identified (they are equivalent) if they lead to the same ν+, or, what is
the same, if D(y, y′) = 0.

Proposition 2.1. This map (R0(K), d)→ (Y (K), D) is a homeomor-
phism between compact metric spaces.

This was formulated as Proposition 2.5 of [10]; please see this refer-
ence for the straightforward proof.

Why did we refer to this representation of R0(K) as a fibered space
over T ? This comes from identifying µ̂j ≡ (µj, σj) for fixed j with a
copy of the unit circle in the obvious way. Loosely speaking, just glue
together the two copies of the interval µj ∈ (aj, bj) that correspond to
the choices σj = −1 and σj = 1, respectively, at the points µj = aj, bj.

If a more formal definition is desired, we can proceed as follows: Let
fj be the map that sends

(µj, σj) 7→ eiπσj(bj−µj)/(bj−aj),

and also fj(bj) = 1, fj(aj) = −1, and define f : Y (K)→ T by applying
these maps componentwise, that is, f(y) = (fj(µ̂j))j.

Proposition 2.2. The map p : R0(K) → T , J 7→ y 7→ f(y), is
continuous and surjective. Moreover, a fiber p−1({f(y)}) consists of a
single point precisely if ρs(K) = 0 for the ρ determined by µ.

Sketch of proof. It is obvious from the construction of p that p is onto.
The continuity of p is established in [10], in the first part of the proof
of [10, Theorem 1.5]. The final claim is obvious from the definition of
p and the previous discussion. �
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It will often be convenient to ignore the identification provided by
f , and thus we will frequently think of p as the map that sends J to µ̂,
thought of as an element of T .

In the sequel, we will need to know how to obtain detailed infor-
mation about ρ from the boundary behavior of H(t + iy) as y → 0+.
As usual, we write H(t) ≡ limy→0+H(t + iy); we know that this limit
exists for Lebesgue almost every t ∈ R.

Lemma 2.3. (a)

dρac(t) =
1

π
χK(t)|H(t)| dt

(b) Let dρ1 = f dρ2,s + dσ be the Lebesgue decomposition of ρ1 with
respect to the singular part of ρ2 (so σ ⊥ ρ2,s). Then

lim
y→0+

H1(t+ iy)

H2(t+ iy)
= f(t)

for ρ2,s-almost every t ∈ R.

Proof. In general, we know that if µ is the measure from the Herglotz
representation of a Herglotz function F , then πdµac(t) = Im F (t) dt.
This gives part (a) because Re H = 0 on K and Im H = 0 on the
complement R \K.

Part (b) is one version of Poltoratski’s theorem on the comparison
of the singular parts from [8]; see also [1] for further background. �

These quantities can be conveniently estimated with the help of the
Hilbert transform. We will make use of its truncated version

(2.6) (Tyf)(x) =

∫
|t−x|>y;|t|≤R

f(t) dt

t− x

as well as the full transform

(Tf)(x) = lim
y→0+

(Tyf)(x);

this limit exists for almost every x ∈ R if f ∈ L1(−R,R).

Lemma 2.4. (a)∣∣∣∣ln ∣∣∣∣H1(x+ iy)

H2(x+ iy)

∣∣∣∣− Ty(ξ1 − ξ2)(x)

∣∣∣∣ ≤ π + 1

(b) For almost every x ∈ R, we have that

lim
y→0+

Re

∫ R

−R

ξ(t) dt

t− x− iy
= (Tξ)(x).
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Sketch of proof. Part (a) follows from (2.1) by a straightforward calcu-
lation, which we leave to the reader; the constant given is not optimal.
A similar calculation yields part (b) at all Lebesgue points x of ξ for
which, in addition, the limit defining (Tξ)(x) exists. �

It will also be useful to recall the following fact, which was also used
in [10].

Lemma 2.5. Suppose that µj = cj = (aj + bj)/2 for all j. Then
ρs(K) = 0.

Proof. We compare H with the function H0 that corresponds to ξ0 =
1/2 on [minK,maxK]; in other words, we obtain ξ0 from ξ by setting
ξ0 = 1/2 on each gap. It is easy to confirm that then

(2.7) Ty(ξ0 − ξ)(x) ≥ C (x ∈ K, y > 0),

for some constant C that does not depend on x ∈ K or y > 0. Indeed,
ξ0 − ξ is non-zero only on the gaps of K, and on such a gap (a, b), we
have that

ξ0(t)− ξ(t) =

{
1/2 a < t < c

−1/2 c < t < b
.

Now if also (a, b) ∩ (x − y, x + y) = ∅, then the integral over (a, b) of
this function makes a positive contribution to Ty(ξ0 − ξ), computed
according to (2.6): just look separately at the two cases (a, b) to the
left of (x − y, x + y) and (a, b) to the right of (x − y, x + y). If the
gap intersects (x− y, x+ y) but is not contained in this interval, then
we can still estimate the contribution to (2.6) by a constant that is
independent of x ∈ K and y > 0, and there are at most two such gaps,
so (2.7) follows.

By Lemma 2.4(a), this shows that

lim inf
y→0+

∣∣∣∣H0(x+ iy)

H(x+ iy)

∣∣∣∣ > 0

for all x ∈ K. Since ρ0,s = 0, Lemma 2.3(b) now implies that ρ has no
singular part on K either. �

We are now ready for the

Proof of Theorem 1.2. The claim that δ is upper semicontinuous is just
another way of saying that R0(K) is compact. Indeed, suppose that
tn → t is a convergent sequence from T . We can then pick Jn, J

′
n from

the corresponding (compact!) fibers, that is, p(Jn) = p(J ′n) = tn, so
that d(Jn, J

′
n) = δ(tn). We can also pass to a subsequence so that
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δ(tn) approaches the lim sup of the full sequence along this subse-
quence. Since R0(K) is compact, we can further assume here that
Jn → J , J ′n → J ′. Then p(J) = p(J ′) = t, and thus δ(t) ≥ d(J, J ′) =
lim sup δ(tn), as we wished to show.

In particular, it now follows that

{t ∈ T : δ(t) = 0} =
⋂
n≥1

{t : δ(t) < 1/n}

is a Gδ set, as claimed. To show that this set is also dense, recall
from Proposition 2.2 that δ(t) = 0 precisely if ρs(K) = 0, where ρ is
the measure determined by t, identified with µ̂ here. This happens if,
for example, µj = (aj + bj)/2 is the center of its gap, as in Lemma
2.5, for all j > j0 for some j0, and µj 6= aj, bj for the remaining gaps
j = 1, . . . , j0. Indeed, the H function of such a configuration differs
from the one discussed in Lemma 2.5 by a rational factor whose poles
and zeros lie in Kc. It now follows from Lemma 2.3(b) that we still have
that ρs(K) = 0 or, equivalently, δ(t) = 0 for any t ∈ T corresponding
to such a configuration of µj’s. The set of these t’s is clearly dense. �

3. Proof of Theorem 1.3

It will of course suffice to connect an arbitrary J ∈ R0(K) to a
specific point J0, which can be chosen in advance. We will take a J0

from a trivial fiber. This will greatly simplify the argument because
if the associated parameters are denoted by µ̂(0), then, as is easy to
show and will be verified below, a different set of parameters (µ̂, g(x))
corresponds to a Jacobi matrix that is close to J0 precisely if µ̂ is close
to µ̂(0) in T . In other words, we may ignore g(x). It is much more
difficult to identify neighborhoods of points J with a general set of
parameters.

The argument we are going to present would work for an arbitrary
J0 of this type, but it seems reasonable to make a specific choice right

away. We will work with µ
(0)
j = cj, as suggested by Lemma 2.5, and

σ
(0)
j = 1.
Let (µ̂, g(x)) be the parameters of a general point J ∈ R0(K). We

will approach J0, starting from this point, by moving the parameters
µ̂j to their final destinations µj = cj, σj = 1 step by step, one at a
time. We first look at the effect of such a movement in the parameter
space.
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Lemma 3.1. Fix arbitrary points µj ∈ [aj, bj] for j ≥ 1, and consider
the parameters (t, µj) for t = µ0 ∈ [a0, b0]. Then the associated mea-
sures ρt, ρt,ac, ρt,s are continuous functions of t ∈ [a0, b0] with respect to
the weak-∗ topology.

Recall in this context that µ uniquely determines a Krein function ξ
and thus also a measure ρ.

Note also that in general, while it is always true that ρ depends
continuously on the parameters (µj), the individual parts ρac, ρs need
not be continuous; this will only hold in specialized situations such as
the one considered in the Lemma.

Proof. It is clear that ξt(x) dx depends continuously on t, and thus
the dependence on t of Ht(z) (with respect to locally uniform conver-
gence on C+) and ρt is also continuous. Hence it suffices to show that
π dρt,ac(x) = |Ht(x)|χK(x) dx is a continuous function of t.

Let’s first look at the situation where t → s ∈ (a0, b0). Then, from
(2.1), ∣∣∣∣Ht(x)

Hs(x)

∣∣∣∣ =

∣∣∣∣s− xt− x

∣∣∣∣ ,
and this converges to 1 as t → s, uniformly on x ∈ K. Thus clearly
ρt,ac → ρs,ac in this case (in fact, in norm).

If t → a0+, say, and f ∈ C0(R) is a test function, then, from the
same formula, we obtain that

π

∫
f(x) dρt,ac(x) =

∫
K

f(x)

∣∣∣∣a0 − x
t− x

∣∣∣∣ |Ha0(x)| dx.

We know that Ha0 ∈ L1(K), so dominated convergence now shows that
this integral converges to∫

K

f(x)|Ha0(x)|χK(x) dx = π

∫
f(x) dρa0,ac(x)

when t→ a0+, as desired. �

Lemma 3.2. Fix µ̂j for j ≥ 1, and let Jt ∈ R0(K) be the Jacobi matrix
that corresponds to these data, complemented by µ0 = t ∈ [a0, b0],
σ0 = 1, gt(x) ≡ 1. Then Jt is a continuous function of t ∈ [a0, b0].

Proof. We focus right away on the case of interest here, namely conti-
nuity at s = a0 (or s = b0). Continuity at an interior point s ∈ (a0, b0)
is easier to establish, with an analogous argument, and will be left to
the reader.
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So suppose that t→ a0. Since gt ≡ 1, σ0 = 1, we have that

(3.1) 2νt,+ = ρt,ac + 2ρt,s +
∑
j≥1

(σj − 1)wj(t)δµj
.

Here, wj(t) = ρt({µj}), and, as usual, the sum is over those j ≥ 1 for
which µj 6= aj, bj; compare (2.4). Similarly,

(3.2) 2νa0,+ = ρa0,ac + 2ρa0,s +
∑
j≥1

(σj − 1)wj(a0)δµj
.

By Lemma 3.1, ρt,ac → ρa0,ac and ρt,s → ρa0,s as t → a0. So we only
need to analyze what happens to the sum in this limit.

It is in fact clear that wj(t) → wj(a0) for j ≥ 1. This follows from
Lemma 2.3(b), which shows that

wj(t)

wj(a0)
= lim

y→0+

∣∣∣∣exp

(∫ t

a0

ds

s− µj − iy

)∣∣∣∣ = exp

(∫ t

a0

ds

s− µj

)
.

Recall in this context that µj /∈ [a0, b0]. In particular, µj 6= a0, and
thus this last expression converges to 1 when t→ a0, as asserted.

Next, we claim that if M ⊂ (−∞, a0), then ρt(M) ≤ ρa0(M). This
is established by a rather similar argument. We again notice that∣∣∣∣ Ht(z)

Ha0(z)

∣∣∣∣ =

∣∣∣∣z − a0

z − t

∣∣∣∣ ,
observe that this is ≤ 1 for z = x < a0 and refer to Lemma 2.3.

So χ(−∞,a0) dρt = ft dρa0 , and ft ≤ 1 here. A similar argument shows
that χ[b0,∞) dρt = ft dρa0 , and here ft → 1 uniformly on [b0,∞) as
t→ a0.

In particular, given any ε > 0, these properties of ρt let us find N ∈ N
and δ > 0 so that∑

j>N

wj(t) < ε if a0 ≤ t < a0 + δ.

This says that the measures
∑

j>N wj(t)δµj
are uniformly bounded by ε

in norm for t ∈ [a0, a0 + δ). The norm of a measure controls any metric
that generates the weak-∗ topology. We also saw that wj(t)→ wj(a0)
for fixed j ≥ 1, so it now follows that the measures from (3.1) converge
to the one from (3.2). This is what we wanted to show; see Proposition
2.1 and (2.5). �

We are now ready for the

Proof of Theorem 1.3. The overall strategy has already been discussed,
at the beginning of this section. We would like to continuously move
from (µ̂, g(x)) to µ̂(0), on a parameter interval 0 ≤ t ≤ 1, say.
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On the interval 0 ≤ t ≤ 1/2, we will move µ̂1 to its final destination

µ
(0)
1 = c1, σ1 = 1, and keep the other µ̂j’s constant, for the time being.
To make this as challenging as possible, suppose that initially σ1 =
−1. We then change g(x) to g(x) ≡ −1 and keep everything else fixed.
In particular, ρ doesn’t change, so this clearly can be done along a
continuous path in R0(K). Now use Lemma 3.2, or rather its analog
for σ0 = −1, g ≡ −1, to move µ1 to its new value µ1 = a1, again
keeping everything else fixed. Next, change g(x) to g(x) ≡ 1. Recall
also that σ1 plays no role when µ1 = a1 is one of the endpoints. Finally,
refer to Lemma 3.2, in its original version, one more time to reach a
point with µ1 = c1, σ1 = 1 (and g(x) ≡ 1, but this information has
become unimportant now). If initially σ1 = 1, this point can also be
reached, and in fact more easily, by the same procedure with the first
two steps omitted.

Next, use the same procedure to move µ̂2 to its final value µ̂
(0)
2 on

1/2 ≤ t ≤ 3/4. Continue in this way to define J(t) for all 0 ≤ t < 1.
As explained, this function J(t) will be continuous, and obviously

J(0) = J . To finish the proof of our claim, it remains to show that
limt→1− J(t) = J0. By construction, we clearly have that µ̂(t) → µ̂(0)

in T . This gives the desired convergence. Indeed, if it was not true
that J(t) → J0 as t → 1−, then, by compactness, J(tn) → J1 6= J0

along some sequence tn → 1−. This implies that µ̂(tn) = p(J(tn)) →
p(J1), so p(J1) = p(J0). However, J0 was from a trivial fiber, so this
information identifies J1 as J1 = J0 after all. �

4. Proof of Theorem 1.5

First of all, it is useful to recall the following criterion for the exis-
tence of point masses of ρ.

Lemma 4.1. Let x ∈ R. Then ρ({x}) > 0 if and only if∫ x+1

x−1

|χ(x,x+1)(t)− ξ(t)|
|t− x|

dt <∞.

So, roughly speaking, ρ({x}) > 0 if and only if ξ essentially jumps
from 0 to 1 at x. For the proof of Lemma 4.1, see, for example, [7, pg.
201] or [9, Lemma 2.4].

In particular, this means that if x0 ∈ K is an isolated point of
K, then all configurations for which the two adjacent µj’s are both
equal to x0 will lead to non-trivial fibers. Indeed, we will then have
that ξ = χ(x0,∞) on a neighborhood of x0, so Lemma 4.1 shows that
ρ({x0}) > 0.

Let’s now begin the
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Proof of Theorem 1.5. For convenience, assume that x0 = 0. Denote
the two adjacent gaps by I1 = (−A, 0) and I2 = (0, B), respectively,
and fix L > 0 such that t < L < min{A,B}.

We will describe the homeomorphism F : R0(K)→ R0(Kt) that we
are required to construct on the level of the spectral data (µ̂, g(x)). As
just explained, if ρ denotes the measure corresponding to a J ∈ R0(K),
then ρ({0}) > 0 if and only if µ1 = µ2 = 0. In this case, the value of
g0 ≡ g(0) is relevant, and we obtain a non-trivial fiber. We will try to
iron out this fiber. We do this, as it were, locally, or perhaps it would
be more precise to say that we only rearrange that part of the fiber
that corresponds to this parameter −1 ≤ g0 ≤ 1. It will thus be useful
to slightly reorganize the data of a general J ∈ R0(K), by now listing
them as follows:

(µ̂j, g(x); µ̂1, µ̂2, g0)

The µ̂j, j ≥ 3, correspond to the remaining gaps, and g(x) is now
viewed as a function on K \ {0}. Our map will simply act as the
identity on these data µ̂j (j ≥ 3), g(x) (x ∈ K \ {0}), and we will
separately map

(4.1) (µ̂1, µ̂2, g0) 7→
(
θ̂1, θ̂2

)
,

with θ1 ∈ [−A,−t], θ2 ∈ [t, B]. The new data (µ̂j, g(x); θ̂1, θ̂2) will then
correspond to a unique J ′ ∈ R0(Kt). The induced map J 7→ J ′ will be
the sought homeomorphism from R0(K) onto R0(Kt).

To define the map (4.1), we distinguish several cases, which will
overlap to some extent:

(i) If µ1 ≤ −L, we simply put θ̂1 = µ̂1. Furthermore, we define θ2 = µ2

if µ2 > L and θ2 = t + µ2(L − t)/L if 0 ≤ µ2 ≤ L, and θ̂2 = (θ2, σ2),
where σ2 = ±1 is the sign of µ̂2 = (µ2, σ2).

(ii) The case µ2 ≥ L is handled similarly: we put θ̂2 = µ̂2 and θ1 = µ1 or
θ1 = −t+µ1(L−t)/L depending on whether µ1 < −L or −L ≤ µ1 ≤ 0,
and we again leave the sign σ1 unchanged. Note that if −µ1 ≥ L and
µ2 ≥ L, so that cases (i) and (ii) both apply, then both definitions lead
to the same result.

(iii) The most important case arises when −µ1, µ2 ≤ L. This region
contains the configuration µ1 = µ2 = 0, which leads to the non-trivial
fiber. It is now more convenient to define the mapping (4.1) in a more
abstract way, rather than give an explicit formula, as we did in the
first two cases. We will do this in two steps. We first map the data
(µ̂1, µ̂2, g0), with −L ≤ µ1 ≤ 0, 0 ≤ µ2 ≤ L, and −1 ≤ g0 ≤ 1 if
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µ1 = µ2 = 0, to a plane region that is homeomorphic to a closed disk.

We then map the points of this region back to data (θ̂1, θ̂2).
Let us now discuss the first step. The following fact will be used

later, and it also helps motivate the procedure that follows. We deal
with data associated with the set K here (not Kt).

Lemma 4.2. Suppose that µ
(n)
j → µj (j ≥ 3),

µ
(n)
1 = −(1 +Gn)sn, µ

(n)
2 = (1−Gn)sn,

with −1 ≤ Gn ≤ 1, Gn → G, and sn > 0, sn → 0. Let ρn be the

measures of the H functions Hn that correspond to the data µ
(n)
j (j ≥

1), and, similarly, let ρ be the measure that is obtained from their limits
µj (j ≥ 3) and µ1 = µ2 = 0. Then

ρn({µ(n)
1 })→

1

2
(1 +G)ρ({0}).

This is a version of the Splitting Lemma from [10]; see Lemma 3.4
of this reference. It gives a precise quantitative description of how the

point mass ρ({0}) splits into two nearby point masses at µ
(n)
1 and µ

(n)
2 .

The statement may look somewhat technical at first sight, but it is
really very much at the heart of the matter because it shows how the
points of the fiber that are obtained by varying −1 ≤ g0 ≤ 1 fit into
the space as a whole.

Proof. From (2.1), we obtain the well known product representation

Hn(z) =
√

(z − E−)(z − E+)

√
(z + A)z

z − µ(n)
1

√
(z −B)z

z − µ(n)
2

(4.2)

·
∏
j≥3

√
(z − aj)(z − bj)
z − µ(n)

j

.

Here, E− = minK, E+ = maxK. We will take absolute values shortly
and so do not need to worry about the proper definition of the square
roots. Of course, H(z) admits a similar representation, and by com-
paring the two expressions we obtain that

(4.3) (z − µ(n)
1 )Hn(z) = zH(z)Pn(z)

z

z − (1−Gn)sn
,

and here

Pn(z) =
∏
j≥3

z − µj
z − µ(n)

j

.

We now make use of the formula

(4.4) ρn({µ(n)
1 }) = lim

y→0+
y|Hn(µ

(n)
1 + iy)|.
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Observe that Pn(z)→ 1 as n→∞, uniformly in z from a neighborhood
of z = 0. If we now evaluate the limit from (4.4) with the help of (4.3),
we find that

lim
n→∞

ρn({µ(n)
1 }) =

1 +G

2
lim
z→0
|zH(z)|.

As zH(z) is holomorphic in a neighborhood of z = 0, this latter limit
indeed exists, and by the analog of (4.4) for H, it equals ρ({0}). �

We are now ready to map our data (µ̂1, µ̂2, g0), with 0 ≤ −µ1, µ2 ≤ L,
to a plane region, as announced. We again distinguish several overlap-
ping cases:

(a) We map (0, 0, g0) 7→ (0, g0) ∈ R2. In the remaining cases, we always
assume that (µ1, µ2) 6= (0, 0).

(b) Next, consider pairs (µ̂1, µ̂2) with σ1 = 1, σ2 = −1. We map these
as follows:

(4.5) (µ̂1, µ̂2) 7→ (−D,G) D =
−µ1 + µ2

L
,G =

µ1 + µ2

µ1 − µ2

Notice how Lemma 4.2 ensures that such a point (−D,G) with −D
close to 0 will also correspond to a Jacobi matrix that is close to the
one corresponding to the point (0, G). We will discuss this in more
detail later. For now, it suffices to observe that the Gn from Lemma

4.2 is indeed related to the µ
(n)
1 , µ

(n)
2 by a formula identical to the one

from (4.5).

(c) If σ1 = −1, σ2 = 1, we use an analogous procedure, but now map
to points lying to the right of the segment {(0, g) : 0 ≤ g ≤ 1}. More
precisely, we define

(4.6) (µ̂1, µ̂2) 7→ (D,−G),

with D,G defined as in (4.5).

(d) If σ1 = σ2 = 1, we first map (µ1, µ2) to a square which we put on
top of the figure obtained so far:

(µ1, µ2) 7→
(µ1

L
, 1 +

µ2

L

)
.

We then fold back the right edge of this square to match the segment
{(d, 1) : 0 < d ≤ 1} that we obtained from case (c). To give a more
precise description in terms of a formula, write(µ1

L
, 1 +

µ2

L

)
= (0, 1) +Reϕ, eϕ = (cosϕ, sinϕ),
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in polar coordinates about (0, 1), with 0 ≤ ϕ ≤ π/2. The full map (to
the plane region) is then given by

(4.7) (µ1, µ2) 7→ (0, 1) +Re2ϕ−π.

(e) Finally, if σ1 = σ2 = −1, attach similarly a piece to the bottom of
the region constructed so far.

Recall that the parameter σj is not used if µj = 0 (j = 1, 2). The
reader should check that this does not cause consistency problems in
the above definitions.

This map is clearly bijective onto its image, and this image is ob-
viously homeomorphic to a closed disk. Moreover, the preimage of its
boundary is given by the set of all (µ̂1, µ̂2, g0) for which µ1 = −L (and
σ1 = 1 or = −1) or µ2 = L.

We can therefore map this image homeomorphically onto

{(θ̂1, θ̂2) : t ≤ −θ1, θ2 ≤ L},

where we now view this set as the Cartesian product of two circular
arcs, endowed with the product topology. Moreover, by the observation
on the preimage of the boundary that was just made, we may further
insist that the resulting composite map

(4.8) (µ̂1, µ̂2, g0) 7→ (θ̂1, θ̂2)

agrees with the ones defined earlier, in cases (i), (ii) above, on µ1 = −L
and on µ2 = L. In fact, we now see that we can glue together all three
maps, with no consistency problems. This completes our definition of
a function that maps as indicated in (4.1).

As announced earlier, we now build a map on the complete parameter
spaces by simply leaving the other parameters unchanged:

(4.9) (µ̂j, g(x); µ̂1, µ̂2, g0) 7→ (µ̂j, g(x); θ̂1, θ̂2)

Recall again that the µ̂j (j ≥ 3) correspond to the other gaps, and g(x)
is a Borel function on x ∈ K \ {0}, −1 ≤ g(x) ≤ 1.

This map accomplishes the desired task of straightening out the fiber
associated with x0 = 0. To prove this claim, we have to verify several
properties, and we do this in separate steps.

Step 1: There is a well defined map F : R0(K) → R0(Kt) that
is induced by (4.9). Clearly, a set of parameters as displayed on the
right-hand side of (4.9) uniquely determines a J ∈ R0(Kt). However,
recall that g(x) is not uniquely determined by J ∈ R0(K); rather, any
function h(x) with h = g almost everywhere with respect to ρs on
K \ {0} will represent the same J . We must show that such a change
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of representative of g does not affect the Jacobi matrix represented by
the right-hand side of (4.9).

This in fact follows immediately from the observation that the two
ρ measures involved here are mutually absolutely continuous with re-
spect to each other on R \ (−A,B). Indeed, if we again use product
representations of the type (4.2) and compare ξ functions, then we see
that the two H functions that are associated with (4.9) differ from each
other by a factor of the form

(4.10)
(z − µ1)(z − µ2)

(z − θ1)(z − θ2)

√
(z − t)(z + t)

z
.

If also µ1 6= −A, µ2 6= B, then this expression approaches non-zero
limits for z = x+ iy, y → 0+, x ∈ R \ (−A,B). Thus our claim about
the equivalence of the ρ measures follows in the usual way from Lemma
2.3.

The case where µ1 = −A or µ2 = B (or both) is treated similarly. No
extra work is needed, really; if, say, µ1 = −A, then, by construction,
θ1 = −A also, and (4.10) in properly reduced form is still valid.

Step 2: The map F : R0(K)→ R0(Kt) induced by (4.9) is injective.
To verify this, we first observe that two different triples (µ̂1, µ̂2, g0)

never get mapped to the same point (θ̂1, θ̂2) under (4.8). This is clear
from the construction. So injectivity could fail only if two data sets
that only differ in their g(x) function got mapped to the same Jacobi
matrix. However, the equivalence of the ρ measures that was discussed
in the previous step prevents this from happening.

Step 3: F is surjective onto R0(Kt). This is again obvious from the
construction: any set of parameters µ̂j, −1 ≤ g(x) ≤ 1, −A ≤ θ1 ≤ −t,
t ≤ θ2 ≤ B, σ1 = ±1, σ2 = ±1 is obtained as an image under (4.9),
and these exhaust the whole parameter space.

Step 4: F is continuous. Let Jn, J ∈ R0(K), and assume that
Jn → J . We must show that then also F (Jn)→ F (J).

From Proposition 2.1 we know that the corresponding parameters

satisfy µ̂
(n)
j → µ̂j (j ≥ 1), and νn,+ → ν+ in weak-∗ sense.

The main issue will be to show that, similarly,

(4.11) (θ̂
(n)
1 , θ̂

(n)
2 )→ (θ̂1, θ̂2).

This is done by considering in detail how the map (4.8) was defined.
It is quite clear, of course, that we will obtain this convergence if
(µ̂1, µ̂2, g0) lies in the interior of one of the regions defined by cases
(i), (ii), or (iii) (a)–(e) above. We will therefore focus right away on
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those points where several cases overlap. In fact, we will explicitly dis-
cuss only two representative scenarios and leave the remaining cases to
the reader.

In the second scenario below, we will be confronted with the crucial
question of how the fiber fits into the space as a whole, but as a warm-
up, let us first look at a situation where µ1 = 0, 0 < µ2 < L, σ2 = 1.

Note that for large n, we will then have that also 0 < µ
(n)
2 < L and

σ
(n)
2 = 1. Moreover, µ

(n)
1 → 0, but both σ

(n)
1 = −1 and σ

(n)
1 = 1 are

possible for these approximating points, and we are either in case (c)

(if σ
(n)
1 = −1) or in case (d) (if σ

(n)
1 = 1) from above. In the first case,

we notice that Gn → −1, so the image points under the intermediate
map (4.6) will converge to (µ2/L, 1). In the second case, we have to

follow the recipe that led to (4.7). Now clearly (µ
(n)
1 /L, 1 + µ

(n)
2 /L)→

(0, 1 + µ2/L), hence Rn → µ2/L, ϕn → π/2, and thus the points from
the right-hand side of (4.7) will again approach (µ2/L, 1). Similar
considerations are in fact also needed to confirm that the overlapping
cases give consistent definitions. In any event, this point (µ2/L, 1) is
obtained as the image of µ1 = 0, 0 < µ2 < L, σ2 = 1.

As (4.8) was defined as the composition of this map with a continuous
map, we have indeed verified (4.11) in this case.

The most interesting scenario arises when µ1 = µ2 = 0; at such
points, cases (a), (b), and (c) meet. In fact, additional issues arise
here when either g0 = 1 or g0 = −1 because then cases (d) and (e),
respectively, are also involved. These are handled by the procedure
discussed in the preceding paragraph, so we will give in to temptation
here and restrict our discussion to the easier case −1 < g0 < 1.

We must again verify that the intermediate image point (0, g0) from
case (a) is also approached if the approximating points lie in the regions
defined by cases (b) or (c). Let’s discuss case (b) explicitly, the other

case being analogous, of course. So consider points (µ
(n)
1 , µ

(n)
2 ) 6= (0, 0),

µ
(n)
j → 0 (j = 1, 2), σ

(n)
1 = 1, σ

(n)
2 = −1. Clearly, Dn → 0, and Lemma

4.2 indeed makes sure that Gn → g0. Let us elaborate on this in more
detail: if we didn’t have this convergence, say Gn → g1 6= g0 on a
subsequence, then Lemma 4.2 would show that

χ(−d,d)νn,+ →
1

2
(1 + g1)ρ({0})δ0

on a suitable small neighborhood (−d, d) of 0. Here we use the fact
that the measures νn,+, restricted to such a set, are point measures

with a single point mass at µ
(n)
1 , of weight ρn({µ(n)

1 }). This we read off
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from (2.4), recalling that σ
(n)
1 = 1, σ

(n)
2 = −1. Also, Lemma 4.1 makes

sure that ρn({0}) = 0.
However, χ(−d,d)ν+ = (1/2)(1 + g0)ρ({0})δ0, so we have reached a

contradiction to Proposition 2.1. Thus Gn → g0, and this again implies
that (4.11) holds. This concludes our discussion of this claim.

To finally show that F (Jn)→ F (J), consider an arbitrary limit point
J0 ∈ R0(Kt) of this sequence. We use the same notation as above. The
Jn, J have data as on the left-hand side of (4.9); an additional index n
is used to label the data of Jn. We must then show that J0 can only be

the unique Jacobi matrix from R0(Kt) with data µ̂j (j ≥ 3), g(x), θ̂1,

θ̂2. Since R0(Kt) is compact, this will yield the desired convergence.
From Proposition 2.1 and what has just been discussed, we in fact

already know that J0 must have data µ̂j (j ≥ 3) and θ̂1, θ̂2.
To obtain information on the function g(x) that is associated with

J0, we take a look at the ν+ measures of the F (Jn), F (J), that is, the
ν+ measures that are determined by the data from the right-hand side
of (4.9). To distinguish these from the measures of the original Jacobi
matrices Jn, J , we denote them by ν̃n,+, ν̃+.

The argument is similar to what we did in step 1. Suppose that µ1 6=
−A, µ2 6= B, and let I be an interval of the form I ≡ (−A+ ε, B − ε)
that contains µ1 and µ2. Again, by (4.10),

(4.12) χR\I dν̃n,+(x) = χR\I

∣∣∣∣∣(x− µ(n)
1 )(x− µ(n)

2 )

(x− θ(n)
1 )(x− θ(n)

2 )

√
x2 − t2
x

∣∣∣∣∣ dνn,+(x),

and of course such a formula also holds for ν̃+ and ν+. As n → ∞,
the factors on the right hand side converge to 1 uniformly on x ∈ Ic.
Hence the fact that νn,+ → ν+ also implies that

(4.13) χIc ν̃n,+ → χIc ν̃+.

This conclusion is also valid if µ1 = −A or µ2 = B. The observations
made in step 1 in this context are still relevant: if, say, µ1 = −A, then

µ
(n)
1 = θ

(n)
1 for all large n and the corresponding factors from (4.12)

simply cancel each other out.
Now ρ̃s(K ∩ I) = 0, so (4.13) indeed forces any limit point of the

sequence ν̃n,+ to employ the same function g(x), almost everywhere
with respect to χK ρ̃s, as the measure ν̃+, if represented as in (2.4). �
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