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Abstract. We give a short proof, prompted by a note by Gary Lawlor, that a ratio-

nal algebraic integer is an ordinary integer. In contrast to the standard approach, the

argument makes no appeal to divisibility.

Gary Lawlor gave a wonderfully short, clever proof that the nth root of a positive integer

is an integer or irrational [4]. We show that his method also gives the well-known, more

general result that an algebraic integer that is a rational number must be an ordinary integer.

In other words, if an algebraic integer is real but not an ordinary integer then it’s irrational.

The standard proofs use divisibility properties of integers (see, for example, [2, p. 66] or [5,

pp. 10-11]). In contrast, the argument below makes no mention of divisibility. See [1] for

another proof, an elegant one, that avoids divisibility and [3] for a recasting, also elegant,

in the language of linear algebra.

First, a bit about our protagonist in case you haven’t met.

Definition. An algebraic integer is a complex number that is a root of a monic polynomial

with integer coefficients.

Some examples.

1. An ordinary integer k is an algebraic integer; it’s a root of X− k. More generally, for n

a positive integer and k an integer (nonnegative if n is even), the real number n
√
k is an

algebraic integer; it’s a root of Xn − k.

2. The golden ratio
1 +
√

5

2
is an algebraic integer; it’s a root of X2 −X− 1.

3.
1 + i√

2
= eπi/4 is an algebraic integer for i =

√
−1; it’s an 8th root of unity, that is, a root

of X8 − 1.

Theorem. An algebraic integer that is also a rational number must be an ordinary integer.

We’ll give our proof a là Lawlor in a moment. If you apply it to the algebraic integer
n
√
k (example 1), you recover Lawlor’s original argument [4]. A basic finiteness property of

algebraic integers, recorded in the lemma below, underpins the proof. To state the property,

we need some notation. Let α be an algebraic integer. Thus there are integers a1, . . . , ak
such that αk + a1α

k−1 + · · ·+ ak = 0, or equivalently

αk = −ak − · · · − a1αk−1. (1)
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We write Z + Zα + · · · + Zαk−1 for the set of linear combinations with integer coefficients

of 1, α, . . . , αk−1. Further, we write Z[α] for the set of linear combinations with integer

coefficients of 1, α, α2, . . .. That is, Z[α] consists of all complex numbers c0+c1α+ · · ·+cnαn

with c0, . . . , cn ∈ Z, as n varies through the set of nonnegative integers. The set Z[α] is the

smallest subring of the complex numbers (with identity) that contains α.

Lemma. We have Z[α] = Z + Zα+ · · ·+ Zαk−1.

Proof. It suffices to show that αn ∈ Z + Zα + · · · + Zαk−1, for n = 0, 1, 2, . . ., which we

prove by induction. The base case n = 0 is visibly true. For the inductive step, suppose

αn ∈ Z + Zα+ · · ·+ Zαk−1. That is, suppose there are integers b1, . . . , bk such that

αn = bk + · · ·+ b1α
k−1.

Multiplying each side by α then gives

αn+1 = bkα+ · · ·+ b1α
k.

Next we substitute the right side of (1) for αk and multiply through by b1. Collecting like

terms, we conclude that αn+1 ∈ Z+Zα+ · · ·+Zαk−1. We’ve established the inductive step

and so the proof is complete. �

With the lemma in hand, we can apply Lawlor’s method to quickly prove the theorem.

Proof. Let α be an algebraic integer that is also a rational number. Write a for the integer

with a ≤ α < a + 1 and set θ = α − a, so that 0 ≤ θ < 1. For n a positive integer,

θn = (α− a)
n ∈ Z[α]. Invoking the lemma, there is a positive integer k such that θn ∈

Z + Zα+ · · ·+ Zαk−1. That is, there are integers c0, c1, . . . , ck−1 with

θn = c0 + c1α+ · · ·+ ck−1α
k−1.

By assumption, we can write α =
p

q
for integers p and q with q > 0. Thus

θn = c0 + c1
p

q
+ c2

p2

q2
+ · · ·+ ck−1

pk−1

qk−1

=
c0q

k−1 + c1pq
k−2 + · · ·+ ck−1p

k−1

qk−1
.

Since 0 ≤ θn < 1, we see that θn =
b

qk−1
for b a nonnegative integer with b < qk−1. It

follows that the set {θ, θ2, θ3, . . .} is finite, and so θ = 0. That is, α = a is an ordinary

integer. �

References

[1] Gilat, D. (2012). Gauss’s Lemma and the Irrationality of Roots, Revisited, Math. Mag. 85(2): 114-116.

[2] Ireland, K., Rosen, M. (1990). A Classical Introduction to Modern Number Theory. 2nd ed. Graduate

Texts in Math., 84, New York, NY: Springer-Verlag.

[3] Lawlor, G. R. (2021). An Eigenargument for Irrational Roots, College Math. J. 52(2): 140-141.

[4] Lawlor, G. R. (2022). A Simple Proof that nth roots are Always Integers or Irrational, Math. Mag. 95(4):

332.



RATIONAL ALGEBRAIC INTEGERS ARE INTEGERS 3

[5] Marcus, D. A. (2018). Number Fields. 2nd ed. Universitext, New York, NY: Springer.

Alan Roche studied at University College Dublin and the University of Chicago, and has taught

at the University of Oklahoma for more years than he is willing to mention. The number of cats in

his household, while changing over time, has always been a positive rational algebraic integer—and

only briefly a root of unity.

Dept. of Mathematics, University of Oklahoma, Norman, OK 73019.

E-mail address: aroche@ou.edu


	References

