Math 5863
Assignment \# 1
due: Friday January 25

Problem 1. Show that in a metric space (X, d) if $\left(x_{n}\right)$ is a Cauchy sequence then $\left\{x_{n} \mid n \in \mathbb{Z}_{+}\right\}$ is bounded. (A subset of X is bounded iff it is contained in $B(x, N)$ for some $x \in X$ and $N \in \mathbb{Z}_{+}$.)

Problem 2. Use the existence of a space-filling curve to show that for each positive integer n there is a continuous function from $I=[0,1]$ onto I^{n}.

Problem 3. Let X be a topological space and let Y be a dense subset of X. Show that if A is a nowhere dense subset of Y (in the subspace topology on Y) then A is nowhere dense in X. (A subset of a topological space is nowhere dense iff its closure has empty interior.)
Hint: You might want to recall theorem 17.4.

