
Math 5863
Archive of True/False Problems
(with brief answers)

1. January 18 (from Topology I Final)

1.1. A space X which is compact, Hausdorff and second countable is metrizable.

TRUE: Compact Hausdorff spaces are normal and the Urysohn Metrization Theorem applies.

1.2. Every separable first countable space is second countable.

FALSE: R` is one counterexample.

1.3. With the cofinite topology R is path connected.

TRUE: If Y has the cofinite topology then a function f : X → Y is continuous iff each point-inverse

f−1(y) is closed in X. In particular if X is T1 and f is one-to-one (or even finite-to-one) then f is

continuous. (The interval I = [0, 1] is T1.)

1.4. If (X, d) is a metric space, x ∈ X and ε > 0 then the closure of B(x, ε) equals {y ∈ X | d(x, y) ≤ ε}.
FALSE: Consider the discrete metric on the two point set X = {a, b} with the discrete topology.

1.5. Let T be the topology on R generated by the basis B = {(a,∞) | a ∈ R}. A continuous function

from (R, T ) to R` must be constant.

TRUE: Consider an open set in U ⊆ R` and a continuous function f : RT → R`. We know that since f

is continuous that f−1(U) ⊆ RT must be open and, thus, of the form (a,∞) for some a ∈ R. However,

let V ⊆ U ∈ R` be open. We can see that (b,∞) = f−1(V ) ⊆ f−1(U) = (a,∞) with b ≤ a. Thus, we

must have that f is constant on f−1(U)∩ f−1(V ) for all U and V open in R`. Therefore, we must have

that f is a constant function.

1.6. Let X be a space and A ⊆ X and let B be a sub-basis for the topology on X. If every B ∈ B
contains an element of A then A is dense in X.

FALSE:

2. January 25

2.1. The topology on R with basis B = {(a,∞) | a ∈ R} is completely metrizable.

FALSE: The space generated by this basis is not Hausdorff. Therefore, it is not metrizable.

2.2. The Cantor one-third set in R is complete.

TRUE: Pick your favorite point in C. You can go down far enough in the construction that you can

find more points in C that it is within any epsilon of your choice.

2.3. The French railway metric on R2 is complete.

TRUE: Where is the only place that a Cauchy Sequence can converge?

2.4. Total boundedness is a topological property of metric spaces.

FALSE: Notice that (0, 1) is homeomorphic to R. We know that (0, 1) ⊆ [0, 1] is totally bounded, but

R is not totally bounded.

2.5. A separable metric space is totally bounded.

FALSE: R is second countable (so separable), but R is not totally bounded.
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2.6. There is a metric on the open interval X = (0, 1) generating the Euclidean topology for which

X∗ −X is uncountable (where X∗ denotes the completion of the metric space X).

TRUE: For any isometric spaces X and Y , the setsX∗ \X and Y ∗ \ Y have the same cardinalities. In

our case, X = (0, 1) and Y = {(x, sin(1/x)) | 0 < x < 1}. Note that Y ∗ \ Y = {(0, y) | y ∈ [−1, 1]}.
We pull the usual metric on Y into X via the map f from X to Y defined by f(x) = (x, sin(1/x)) such

that f is an isometry together with this new metric on X.

3. February 6

3.1. The French railway metric on R2 is locally compact.

FALSE: Consider the unit circle in R2.

3.2. Let X be the space obtained by identifying together each pair of opposite edges of a (filled-in)

regular octagon in R2 (using the same orientation on the opposite edges). Then X is homeomorphic to

the torus T 2.

FALSE: Consider the Euler Characteristic.

3.3. Contractible spaces are connected.

TRUE: Continuous image of a connected set is connected.

3.4. The Euler characteristic of the Mobius band M2 is 0.

True: This should be pretty straightforward. There is 1 two-cell, 3 one-cells, and 2 zero-cells.

3.5. There is a ”capital letter subspace”1 of R2 that has Euler characteristic 2.

FALSE: We can draw these out and calculate the Euler Characteristic.

3.6. Contractible spaces are locally connected.

FALSE: Think of a the comb space or a space with an infinite number of rays originating from a single

point. We can take a neighborhood at a point on the y-axis that does not contain the x-axis and see

that this space is not locally connected.

3.7. Every continuous function from a space X to a contractible space Y is nullhomotopic. (A map

is nullhomotopic iff it is homotopic to a constant function.)

TRUE: Let f : X → Y be such a continuous function and i : Y → Y be the identity map that is

homotopic to a constant map. Then, we can consider the composition i ◦ f : X → Y which is a

homotopic to a constant map. Therefore, we can see that i ◦ f is nullhomotopic. Moreover, notice that

the choice of continuous function was arbitrary.

4. February 20

4.1. For evey topological space X the empty subset is a deformation retract of X.

FALSE: The empty set is not an element of X, so I cannot map anything to the empty set.

4.2. The singleton set consisting of the origin is a deformation retract of R2 with the topology induced

by the French railway metric.

TRUE: We can think of the retraction that continuously maps each point of R2 to the origin by moving

the point along the line that it forms from itself to the origin. This created a deformation retract from

R2 to the origin.

4.3. Let X and Y be topological spaces with y0 ∈ Y . The (projection) map p1(x, y) = (x, y0) from

X × Y to X × {y0} is a retraction.

1ala Chapter 0 of Hatcher’s book



TRUE: Notice that for any set of the form U×{y0} we have p1(u, y) = (u, y0) for any (u, y0) ∈ U×{y0}.
Therefore, we have that p1 is a retraction of X × Y to X × {y0}.

4.4. In the previous problem if Y = I2 then p1 is a deformation retraction.

TRUE: Notice that the retraction p1(x, y) is isotopic to the identity function on X. Therefore, we see

that p1 is a deformation retraction.

4.5. If f : I → X is a path from x0 to x0 in X then f is null-homotopic.

FALSE: Let f : I → X be a loop from x0 to x0 in the space X. Define H : I × I → X by H(s, t) =

f((1 − t)s + t) . This is a composition H = f ◦ K of the linear function K : I × I → I defined by

K(s, t) = (1 − t)s + t with f , and is continuous because both K and f are continuous. Observe that

H(s, 0) = f(s) and H(s, 1) = f(1) = x0 = cx0(s). Therefore H is a homotopy from f to the constant

function cx0 : I → X. By definition, we conclude that f is null-homotopic.

(The important thing to notice here is that the homotopy H is definitely not a homotopy relative to

the endpoints 0, 1 of I. But that’s OK because we just need to show that f and the constant map cx0

are homotopic, and not that they are path-homotopic.)

4.6. A surface with odd Euler characteristic is non-orientable.

TRUE: We know that the Euler Characteristic of a non orientable surface is 2− g where g is the genus

of the surface. However, for an orientable surface, we have the Euler Characteristic being 2(1−g) which

is always even.

4.7. The surfaces with id patterns aba−1b and c2d2 are homeomorphic.

TRUE: Draw out aba−1b do some cutting and pasting.

4.8. The 2-disk with identification id abcac−1ab is a nonorientable surface with genus 3.

FALSE: Notice that the letter a appears three times. Therefore, we know that this is not a surface

because a surface must have pairs of letters or one letter that appears once (for a surface with boundary).

4.9. The 2-disk with id pattern abcac−1ab has Euler characteristic −1.

TRUE: We have 1-zero cell, 3-one cells, and 1-two cell! Thus, χ(X) = 1− 3 + 1 = −1.

4.10. There is a 2-disk with id pattern X representing the torus T 2 for which radial projection gives a

deformation retraction from X−{origin} onto a subspace of X homeomorphic to {(x, 0) | −2 ≤ x ≤ 2}∪
{(0, y) | 1 ≤ y ≤ 2} ∪

{
(x, y) | x2 + y2 = 1

}
.

TRUE: We can draw the cell complex and see that there are 6 zero cells, and 7 one cells. Therefore, when

we calculate the Euler Characteristic, we see that χ(X) = 6 − 7 = −1. Thus, the Euler Characteristic

of the torus and X, there is a homeomorphism between them.

4.11. If X is a contractible space then {x0} is a deformation retract of X for some x0 ∈ X.

False:


