Math 5863 TF Problem Set # 2 Class group assignment due for discussion on Friday January 25

Instructions: Determine whether each statement is true or false and be prepared to provide a brief proof or counterexample supporting your conclusion. (Please discuss with all classmates beforehand!)

Problem 1.	The topology on \mathbb{R} with basis $\mathcal{B} = \{(a, \infty) \mid a \in \mathbb{R}\}$ is completely metrizable.
Problem 2.	The Cantor one-third set in \mathbb{R} is complete.
Problem 3.	The French railway metric on \mathbb{R}^2 is complete.
Problem 4.	Total boundedness is a topological property of metric spaces.
Problem 5.	A separable metric space is totally bounded.
PROBLEM 6. for which X^*	There is a metric on the open interval $X = (0, 1)$ generating the Euclidean topology $-X$ is uncountable (where X^* denotes the completion of the metric space X).