1. (10 points) Consider the three sets $\emptyset,\{\emptyset\}$ and $\{\{\emptyset,\{\emptyset\}\}\}$.
(a) Briefly explain why no two of these three sets are equal.
(b) Determine the cardinality of each of the three sets.
2. (15 points) Use a proof by contradiction to show that $A \cap \bar{A}=\emptyset$ for any set A.
3. (15 points) Let p and q be propositions.
(a) Construct a truth table for the compound proposition $(\neg q \rightarrow p) \wedge(q \vee \neg p)$.
(b) Is the proposition $(\neg q \rightarrow p) \wedge(q \vee \neg p)$ logically equivalent to $p \rightarrow q$? Refer to (a) to justify your answer.
4. (15 points) Prove the statement: For all sets A, B and C, if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.
5. (10 points) Show that the following statement is false:

For all sets A, B and C, if $A \subseteq B$ and $A \subseteq C$ then $B \subseteq C$.
6. (20 points) Let $f: \mathbb{R} \rightarrow[0, \infty)$ be the function described by the rule $f(x)=|x|+1$.
(a) Identify the domain and the codomain of f.
(b) Determine the range of f.
(c) Is f onto? Justify your answer using the definition of onto.
(d) Is f one-to-one? Justify your answer using the definition of one-to-one.
7. (15 points) (a) State what it means for two sets C and D to be equal.
(b) Prove that $A=(A \cap B) \cup(A-B)$ for all sets A and B.

