## Class Problem

Math 2513
Friday, July 8

Problem. How many bit strings of length 10 are there that satisfy:
(a) the strings start with 100 and end with 11 ?
(b) the strings start with 100 or end with 11?
(c) the strings start with 100 or start with 11 ?
(d) the strings do not start with 100 or end with 11 ?

## ANSWERS:

(a) There are $2^{5}=32$ bit strings of length 10 that start with 100 and end with 11. (Take any bit string of length 5 , of which there are $2^{5}$, and add 100 as a prefix and 11 as a suffix.)
(b) There are $2^{7}+2^{8}-2^{5}=352$ bit strings of length 10 that start with 100 or end with 11 . Here we use the Principle of Inclusion/Exclusion: Let $A$ be the set of all bit strings of length 10 that start with 100 or end with 11 , and let

$$
\begin{aligned}
& A_{1}=\{\text { bit strings of length } 10 \text { starting with } 100\} \\
& A_{2}=\{\text { bit strings of length } 10 \text { ending with } 11\}
\end{aligned}
$$

Then $A=A_{1} \cup A_{2}$ and

$$
|A|=\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|=2^{7}+2^{8}-2^{5}
$$

where the cardinality of $A_{1} \cap A_{2}$ was determined in (a).
(c) There are $2^{7}+2^{8}=384$ bit strings of length 10 that start with 100 or start with 11. In this problem the sum principle applies, if $A_{1}$ is defined as in (b) and $A_{3}$ is the set of bit strings of length 10 starting with 11 then $A_{1} \cap A_{3}=\emptyset$. The problem asks to determine the number of bit strings in $A_{1} \cup A_{3}$. So

$$
\left|A_{1} \cup A_{3}\right|=\left|A_{1}\right|+\left|A_{3}\right|=2^{7}+2^{8} .
$$

(d) By the sum principle, the total number $2^{10}$ of bit strings of length 10 equals the number $2^{7}+2^{8}-2^{5}$ (from (b)) of bit strings of length 10 that start with 100 or end with 11 plus the number $N$ of stringgs of length 10 that do not start with 100 or end with 11 . Thus

$$
N=2^{10}-\left(2^{7}+2^{8}-2^{5}\right)=672
$$

