Class Problem

Math 2513
Wednesday, July 6

Problem. Let A be a set with n elements which are labelled $a_{1}, a_{2}, \ldots, a_{n}$. If B is a subset of A let $f(B)$ be the bit string of length n which has a 1 in the i th position if $a_{i} \in B$ and has a 0 in the i th position if $a_{i} \notin B$. This defines a function f from the power set of A to the set \mathcal{B}_{n} consisting of all bit strings of length n. That is $f: \mathcal{P} \rightarrow \mathcal{B}_{n}$.
(a) In the case where $n=8$, determine each of the following:

$$
f(\emptyset), f(A), f\left(\left\{a_{5}\right\}\right), f\left(\left\{a_{8}\right\}\right) \text { and } f\left(\left\{a_{1}, a_{3}, a_{8}\right\}\right)
$$

(b) In the case where $n=8$, describe the subsets B for which $f(B)$ is each of:

$$
10101010,01010101,11110000, \text { and } 00001111 .
$$

(c) How can the cardinality of a subset B be determined by examining its corresponding bit string $f(B)$?

ANSWERS:
(a) $f(\emptyset)=00000000, f(A)=11111111, f\left(\left\{a_{5}\right\}\right)=00001000, f\left(\left\{a_{8}\right\}\right)=00000001$ and $f\left(\left\{a_{1}, a_{3}, a_{8}\right\}=\right.$ 10100001.
(b) $f\left(\left\{a_{1}, a_{3}, a_{5}, a_{7}\right\}\right)=10101010, f\left(\left\{a_{2}, a_{4}, a_{6}, a_{8}\right\}=01010101, f\left(\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}=11110000\right.\right.$, and $f\left(\left\{a_{5}, a_{6}, a_{7}, a_{8}\right\}=00001111\right.$.
(c) The cardinality of a subset B of A equals the number of 1 's in the bit string $f(B)$.

