Class Problem

Math 2513
Monday, July 11

Problem. How many permutations of the letters $A B C D E F G H$ contain:
(a) the string $C D E$?
(b) the strings $B A$ and $F G H$?
(c) at least one of the strings $B A$ or $F G H$?
(d) the strings $F G H$ and $D G$?
(On one of these four problems you should have used the Principle of Inclusion/Exclusion. Be sure to indicate where it was used.)

NOTE: Since there are 8 letters available, the total number of possible permutations of the letters is $8!=40,320$. Are your answers smaller than this?

ANSWERS:
(a) The set of permutations of the letters $A B C D E F G H$ that contain the string $C D E$ is the same as the set of permutations of the 6 -element set $\{A, B, C D E, F, G, H\}$. The latter set has $P(6,6)=6$! $=$ 720 elements.
(b) Here we are interested in the set of permutations of the set $\{B A, C, D, E, F G H\}$, of which there are $5!=120$.
(c) Let S be the set of permutations of $A B C D E F G H$ that contain $B A$ and let T be the set of permutations of $A B C D E F G H$ that contain $F G H$. Then (as above) $|S|=7$! and $|T|=6$! and $|S \cap T|=5!$. Using the principle of inclusion/exclusion, the cardinality of $S \cup T$ equals

$$
|S \cup T|=|S|+|T|-|S \cap T|=7!+6!-5!=5,640 .
$$

(d) There are no permutations of $A B C D E F G H$ that contain both strings $F G H$ and $D G$, because the letter G can't be in two places at once.

