Class Problem

Math 2513
Tuesday, June 28

Problem. Let $A=\{1,2,3,4,5\}$. The directed graph shown below determines a relation R on A using the convention that if there is a directed edge from x to y then (x, y) is an element of R.
(a) What is R for this example?
(b) Which of the following properties does this relation satisfy:
reflexive, symmetric, anti-symmetric, transitive ?
Justify each of your four answers with an explanation or a counterexample as appropriate.

ANSWERS:

(a) The relation on A determined by the directed graph is

$$
R=\{(1,1),(1,2),(1,3),(1,4),(2,3),(2,4),(3,2),(3,3),(4,4),(5,4),(5,5)\} .
$$

(b) This relation does not satisfy any of the four properties.

1. R is not reflexive because $(2,2) \notin R$.
2. R is not symmetric because $(1,2) \in R$ but $(2,1) \notin R$.
3. R is not anti-symmetric because $(2,3) \in R$ and $(3,2) \in R$ but $2 \neq 3$.
4. R is not transitive because $(3,2) \in R$ and $(2,4) \in R$ but $(3,4) \notin R$.

NOTE: See if you can interpret the answers to part (b) in terms of the directed graph and in terms
of the matrix for R, which is the 5×5 matrix $M=\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1\end{array}\right)$.

