Class Problem

Math 2513
Tuesday, June 21

Problem. Prove that if n is an integer and $3 n+2$ is odd then n is odd. Use either an indirect proof or a proof by contradiction.

SOLUTION:

Indirect Proof. Let n be an integer. Assume that n is not odd. By definition of odd, this means that n is even. Therefore we may express n as $n=2 k$ for some integer k, and

$$
3 n+2=3(2 k)+2=6 k+2=2(3 k+1) .
$$

Since $3 k+1$ is an integer it follows that $3 n+2$ is even (by the definition of even), and so $3 n+2$ is not odd. This completes the proof using the technique of indirect proof. (We have shown that if n is not odd then $3 n+2$ is not odd, which is the contrapositive of the statement to be proved.)

Proof by Contradiction. Let n be an integer. Suppose that $3 n+2$ is odd and that n is not odd. By definition of odd, this means that n is even. Therefore n equals $2 k$ for some integer k (using the definition of even), and so

$$
3 n+2=3(2 k)+2=6 k+2=2(3 k+1) .
$$

Since $3 k+1$ is an integer it follows that $3 n+2$ is even (by the definition of even). Therefore $3 n+2$, which is odd by our original hypothesis, is not odd, and this is a contradiction. This establishes the desired result that if $3 n+2$ is odd then n must be odd.

