Class Problem Math 2513 Thursday, June 16

PROBLEM. Let $f: A \to B$ and $g: B \to C$ be functions. Consider the implication \mathcal{P} :

If $f: A \to B$ and $g: B \to C$ are one-to-one functions then $g \circ f: A \to C$ is a one-to-one function.

(a) State the converse of \mathcal{P} .

(b) State the contrapositive of \mathcal{P} .

(c) State the inverse of \mathcal{P} .

(d) Two of the statements among \mathcal{P} , its converse, its contrapositive and its inverse are false. Determine which two are the false ones and explain.

SOLUTION:

(a) If $g \circ f : A \to C$ is one-to-one then both $f : A \to B$ and $g : B \to C$ are one-to-one.

(b) If $g \circ f : A \to C$ is not one-to-one then $f : A \to B$ and $g : B \to C$ are not both one-to-one. This can also be phrased as: If $g \circ f : A \to C$ is not one-to-one then $f : A \to B$ is not one-to-one or $g : B \to C$ is not one-to-one.

(c) If $f : A \to B$ and $g : B \to C$ are not both one-to-one then $g \circ f : A \to C$ is not one-to-one. This can also be phrased as: If $f : A \to B$ is not one-to-one or $g : B \to C$ is not one-to-one then $g \circ f : A \to C$ is not one-to-one.

(d) Both \mathcal{P} and its contrapositive are true, but the converse and the inverse of \mathcal{P} are false.

To see that the converse is false: let $f : \{1\} \to \{1,2\}$ be given by f(1) = 1 and let $g : \{1,2\} \to \{1\}$ be given by g(1) = g(2) = 1. Then $g \circ f : \{1\} \to \{1\}$ is given by $g \circ f(1) = 1$, and $g \circ f$ is a one-to-one function. However g is not one-to-one, which shows that the converse of \mathcal{P} is false.

Since the inverse of \mathcal{P} is logically equivalent to the converse of \mathcal{P} , the same example shows that the inverse is false.