## Class Problem <br> Math 2513 <br> Thursday, June 16

Problem. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Consider the implication $\mathcal{P}$ :
If $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-to-one functions then $g \circ f: A \rightarrow C$ is a one-to-one function.
(a) State the converse of $\mathcal{P}$.
(b) State the contrapositive of $\mathcal{P}$.
(c) State the inverse of $\mathcal{P}$.
(d) Two of the statements among $\mathcal{P}$, its converse, its contrapositive and its inverse are false. Determine which two are the false ones and explain.

## SOLUTION:

(a) If $g \circ f: A \rightarrow C$ is one-to-one then both $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-to-one.
(b) If $g \circ f: A \rightarrow C$ is not one-to-one then $f: A \rightarrow B$ and $g: B \rightarrow C$ are not both one-to-one. This can also be phrased as: If $g \circ f: A \rightarrow C$ is not one-to-one then $f: A \rightarrow B$ is not one-to-one or $g: B \rightarrow C$ is not one-to-one.
(c) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are not both one-to-one then $g \circ f: A \rightarrow C$ is not one-to-one. This can also be phrased as: If $f: A \rightarrow B$ is not one-to-one or $g: B \rightarrow C$ is not one-to-one then $g \circ f: A \rightarrow C$ is not one-to-one.
(d) Both $\mathcal{P}$ and its contrapositive are true, but the converse and the inverse of $\mathcal{P}$ are false.

To see that the converse is false: let $f:\{1\} \rightarrow\{1,2\}$ be given by $f(1)=1$ and let $g:\{1,2\} \rightarrow\{1\}$ be given by $g(1)=g(2)=1$. Then $g \circ f:\{1\} \rightarrow\{1\}$ is given by $g \circ f(1)=1$, and $g \circ f$ is a one-to-one function. However $g$ is not one-to-one, which shows that the converse of $\mathcal{P}$ is false.
Since the inverse of $\mathcal{P}$ is logically equivalent to the converse of $\mathcal{P}$, the same example shows that the inverse is false.

