EXAM 3

Math 2513
11-19-04

1. (15 points) Use a proof by contradiction to show that the sum of a rational number and an irrational number is irrational.

ANSWER: This problem was discussed in class.
2. (10 points) Use the binomial theorem to determine the $x^{6} y^{3}$ term in the expansion of $(2 x-3 y)^{9}$.

ANSWER: $C(9,3)(2 x)^{6}(-3 y)^{3}=-145152 x^{6} y^{3}$
3. (20 points) Determine the number of bit strings which satisfy each of the following and clearly name any counting principles that are used:
(a) The strings of length 8 which begin with 4 zeros and end with 101 ?
(b) The strings of length 8 which begin with 4 zeros or end with 101?
(c) The strings of length 8 which have exactly 4 zeros.

ANSWER: (a) 2 , (b) $2^{4}+2^{5}-2=46$ using inclusion/exclusion, (c) $C(8,4)=70$
4. (15 points) (a) How many different strings of length 5 can be made from the letters in "BOBBY"
(b) How many different strings of length 4 can be made from the letters in "BOBBY"

ANSWER: (a) 20, (b) 20
5. (20 points) Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$.
(a) How many functions from A to B are there?
(b) How many 1-1 functions from A to B are there?
(c) How many onto functions from A to B are there?
(d) How many functions f from A to B are there which satisfy the condition that there are exactly two elements x in A with $f(x)=b_{3}$?

ANSWER: (a) $4^{3}=64, \quad$ (b) $4 \cdot 3 \cdot 2=24, \quad$ (c) $0, \quad$ (d) $C(3,2) \cdot 3=9$
6. (20 points) Let R be the relation on \mathbb{N} given by $R=\{(m, n) \mid m, n \in \mathbb{N}$ and $(m-n)(m-1)=0\}$. Explain what each of the following means, and then determine whether this relation R satisfies it:
(a) R is reflexive. (b) R is symmetric. (c) R is anti-symmetric. (d) R is transitive.

ANSWER: (a) YES, (b) NO, (c) YES, (d) YES

