Name

- 1. (15 points) Consider the set identity $A B \subseteq A$.
 - (a) Write down complete statements of the two definitions which play central roles in this identity.
 - (b) Prove the identity.
- 2. (10 points) In one or two sentences describe the standard general strategy which you would use to prove that two given sets are equal.
- 3. (15 points) Let $f : \mathbb{Z} \to \mathbb{Z}$ be the function described by the rule $f(n) = n^2 + 1$. (a) What are the domain, codomain and range of this function f? (b) Show (by example) that f is not injective. (c) Determine f(S) if $S = \{-1, 0, 1, 2, 3\}$.
- 4. (15 points) Let A and B be sets such that $A \subseteq B$. Show that $A \cup B \subseteq B$.
- 5. (10 points) Let A and B be two non-empty sets. (a) Describe the Cartesian product $A \times B$. (b) Let $P: A \times B \to B$ be the function which maps (a, b) to b. Show that P is onto.
- 6. (10 points) Let f and g be functions from \mathbb{R} to \mathbb{R} given by f(x) = 3x 2 and g(x) = ax + b where a and b are constants. (a) Determine an equation for $g \circ f(x)$ (b) Find values for a and b such that $g \circ f(x) = x$ for every $x \in \mathbb{R}$. Then determine $f \circ g(x)$ when these values of a and b are used.
- 7. (10 points) Explain why the function $h : \{a, b, c, d\} \rightarrow \{1, 2, 3, 4\}$ defined by h(a) = 2, h(b) = 4, h(c) = 3, and h(d) = 1 is a bijection.
- 8. (15 points) Let A, B and C be sets. Prove that $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.