FINAL EXAM

Math 2513
12-13-04

1. (15 points) Use induction to prove that $\sum_{k=0}^{n} 2 k+1=(n+1)^{2}$ for every $n \in \mathbb{N}$.
2. (15 points) (a) Let A and B be sets. Give the definition of the set difference $A-B$.
(b) Use basic definitions to show that if A and B are disjoint sets then $A-(A-B)=\emptyset$.
3. (5 points) Draw a schematic diagram of a directed graph which has (directed) paths of length 2 and 3 but no (directed) path of length 5 .
4. (20 points) Let A be the set of all bit strings of length 10 .
(a) How many elements does A have?
(b) Does A have more than 10^{10} subsets with exactly four elements?
(c) Let C be the subset of A consisiting of those 10 -strings which contain a 100100 " substring. How many elements does C have?
(d) Let D be the subset of A consisiting of those 10 -strings which contain a " 100100 " substring or start with two successive 1's. Determine $|D|$.
(e) How many 10 -strings contain a " 100100 " substring or a " 00000 " substring?
5. (20 points) (a) Let X and Y be sets and $f: X \rightarrow Y$ be a function. Define what it means for f to be one-to-one.
(b) Give an example of a function which is not one-to-one.
(c) Give an example of a function which is one-to-one.
(d) If X has n elements and Y has k elements, then how many one-to-one functions from X to Y are there?
(e) Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$. How many one-to-one functions $f: X \rightarrow Y$ are there that satisfy $f\left(\left\{x_{1}, x_{2}\right\}\right) \subseteq\left\{y_{1}, y_{2}\right\}$?
6. (15 points) Let r_{1} and r_{2} be rational numbers where $r_{2} \neq 0$. Show that $2 r_{1}+\frac{r_{1}}{r_{2}}$ is rational.
7. (10 points) Let $A=\{1,2,3\}$. (a) How many different relations are there on A ? (b) Give an example of a relation on A which contains $(1,3)$ but is neither symmetric nor anti-symmetric. (c) Give an example of a relation on A that is both symmetric and anti-symmetric.
