Math 2513, Spring 2005

EXAM 2-Solutions

NOTE: Most of the problems on this test can be solved in more than one way.

1. (15 points) Consider the implication $\mathcal{P}:$ If $f: A \rightarrow B$ is a surjective function then $f: A \rightarrow B$ has an inverse.
(a) State the converse of \mathcal{P}.
(b) State the contrapositive of \mathcal{P}.
(c) State the inverse of \mathcal{P}.
(a) Converse of \mathcal{P} : If $f: A \rightarrow B$ has an inverse then $f: A \rightarrow B$ is a surjective function.
(b) Contrapositive of \mathcal{P} : If $f: A \rightarrow B$ does not have an inverse then $f: A \rightarrow B$ is not a surjective function.
(c) Inverse of \mathcal{P} : If $f: A \rightarrow B$ is not a surjective function then $f: A \rightarrow B$ does not have an inverse.

NOTE: The statements in (a) and (c) are true statements, the other two ((b) and \mathcal{P} itself) are not.
2. (15 points) Let ℓ, m and n be positive integers.
(a) Define what ' ℓ divides m ' means.
(b) Prove that if ℓ divides m and ℓ divides n then ℓ divides $3 n-5 m$.
(c) Show that the converse of (b) is not true.
(a) ' ℓ divides m ' means that there exists an integer k such that $m=\ell k$.
(b) Let ℓ, m and n be positive integers. Assume that ℓ divides m and that ℓ divides n. By definition of divides, this means that there are integers k_{1} and k_{2} such that $m=\ell k_{1}$ and $n=\ell k_{2}$. Thus

$$
3 n-m=3 \ell k_{1}-5 \ell k_{2}=\ell\left(3 k_{1}-5 k_{2}\right) .
$$

Since $3 k_{1}-5 k_{2}$ is an integer (the product and the sum of integers is an integer) it follows that ℓ divides $3 n-5 m$.
(c) Take $n=1, m=-3$ and $\ell=2$. Then $\ell=2$ divides $3 n-5 m=3(1)-5(-3)=18$ but $\ell=2$ does not divide $n=1$. This is just one of many possible counterexamples.
3. (10 points) Let A and B be sets. State the negation of each of the following propositions as directly as possible.
(a) B is a subset of A or $A \cap B=\emptyset$.
(b) If B is a subset of A then A and B are disjoint.
(a) First note that if a statement of the form " \mathcal{P} or \mathcal{Q} " is true then either \mathcal{P} is true or \mathcal{Q} is true (or possibly both). So if " \mathcal{P} or \mathcal{Q} " is false then \mathcal{P} and \mathcal{Q} must both be false.
So a correct answer to (a) is: B is not a subset of A and $A \cap B \neq \emptyset$.
(b) First note that if a statement of the form "if \mathcal{P} then \mathcal{Q} " is false then it must be that \mathcal{P} is false and \mathcal{Q} is true. So a correct answer to (b) is: B is a subset of A, and A and B are not disjoint.
4. (10 points) Use a truth table to demonstrate that $(p \vee q) \wedge(\neg p \vee r)$ is not logically equivalent to $q \vee r$.

If you write out the entire truth table (which I'd rather not do here) you will discover two lines where $(p \vee q) \wedge(\neg p \vee r)$ and $q \vee r$ take different values but have the same inputs p, q and r. They are the lines where (1) $p=q=T$ and $r=F$ and where (2) $p=q=F$ and $r=T$.
5. (15 points) Consider the proposition 'The square of an even number is an even number'.
(a) Describe the procedure you would use to prove the proposition with a direct proof.
(b) Describe the procedure you would use to prove the proposition with an indirect proof.
(c) Describe the procedure you would use to prove the proposition with a proof by contradiction.
(d) Prove the proposition.
(a) Assume that n is even then show using the standard principles of logical inference that n^{2} is even.
(b) Assume that n^{2} is not even then show that n is not even.
(c) Assume that n is even and that n^{2} is not even then derive a contradiction.
(d) I'll use a direct proof: Let n be an integer. Assume that n is even. This means that $n=2 k$ for some integer k (definition of "even"). Therefore

$$
n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right) .
$$

Since $2 k^{2}$ is an integer (because it can be expressed as the product of three integers $2, k$ and k), we conclude that n^{2} is even (by the definition of "even").
6. (15 points) Let A and B be sets. Show that $A \subseteq B$ if and only if $A-B=\emptyset$. Break the proof into two separate parts, one for each implication.
(\Rightarrow) Let A and B be sets. Assume that A is a subset of B and that $A-B \neq \emptyset$. Let x be an element of $A-B$ (which exists since we know that $A-B$ is not the empty set). This means that $x \in A$ and $x \notin B$. Since $x \in A$ and $A \subseteq B$, it follows from the definition of subset that $x \in B$. Thus $x \in B$ and $x \notin B$ which is a contradiction. This shows that $A \subseteq B$ implies $A-B=\emptyset$ using proof by contradiction.
(\Leftarrow) Let A and B be sets. Assume that A is not a subset of B. Therefore there is an element x such that $x \in A$ and $x \notin B$ (by definition of subset). By the definition of set difference, x is an element of $A-B$. Since $A-B$ has at least one element it cannot equal the empty set; that is, $A-B \neq \emptyset$. This shows (by an indeirect proof) that if $A-B=\emptyset$ then $A \subseteq B$.
7. (10 points) Let n and m be integers.
(a) What does $m \equiv n(\bmod 5)$ mean? (State the definition.)s
(b) Find three different values of n which satisfy the equation $n+1 \equiv 0(\bmod 5)$.
(c) Does the equation $n^{2}+1 \equiv 0(\bmod 5)$ have any solutions? If so how many?
(d) Does the equation $n^{4}+1 \equiv 0(\bmod 5)$ have any solutions? If so how many?
(a) $m \equiv n(\bmod 5)$ means that $m-n$ is divisible by 5 . In other words, there is an integer k so that $m-n=5 k$ or so that $m=5 k+n$.
(b) If $n+1 \equiv 0(\bmod 5)$ then $n+1=(n+1)-0$ must be divisible by 5 by part (a). This means that $n+1=5 k$ or that $n=5 k-1$ for some integer k. Take three different values for k to give specific answers for (b).
(c) Note that $n=2$ and $n=3$ are solutions to the equation $n^{2}+1 \equiv 0(\bmod 5)$. Any integer which is congruent to 2 or 3 modulo 5 will also satisfy the equation. In other words, all integers of the form $5 k+2$ and $5 k+3$ where k is an integer will satisfy the equation. Therefore the equation has infinitely many solutions.
(d) By direct checking we see that the equation $n^{4}+1 \equiv 0(\bmod 5)$ has no solution between 0 and 4 (because $0^{4}+1=1,1^{4}+1=2,2^{4}+1=17,3^{4}+1=82$ and $4^{4}+1=257$ none of which are divisible by 5). If n was a solution to the equation then $5 k+n$ would also be a solution, and this means that there would have to be at least one solution where n is between 0 and 4 , which we have seen to be impossible. We conclude that the equation in
(d) has no solutions.
8. (10 points) Let m and n be positive integer larger than 1 .
(a) Describe the prime factorization of n^{2} in terms of the prime factorization of n.
(b) Explain how to use your answer to part (a) to determine whether or not the integer 288 is a perfect square.
(c) Show that it is not always true that $\operatorname{gcd}\left(n^{2}, m^{3}\right)=\operatorname{gcd}(n, m)^{2}$.
(a) If n has the prime factorization $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ (where the p_{i} 's are distinct primes and each a_{i} is a positive integer) then the prime factorization of n^{2} is $n^{2}=p_{1}^{2 a_{1}} p_{2}^{2 a_{2}} \cdots p_{k}^{2 a_{k}}$.
(b) By part (a) an integer n which is a perfect square would have to have a prime factorization $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ where each a_{i} is even. Since the prime factorization of 288 is $288=2^{5} 3^{2}$ we see that 288 is not a perfect square (as the power of 2 is an odd number).
(c) It is true that $\operatorname{gcd}(n, m)^{2}$ divides $\operatorname{gcd}\left(n^{2}, m^{3}\right)$, but they are not always equal. One counterexample occurs when $n=25$ and $m=5$, but many others can be found as well.

