Fields Institute Communications
Volume 00, 0000

Universal Covers and Category Theory in Polynomial and
Differential Galois Theory

Andy R. Magid
Department of Mathematics
University of Oklahoma
Norman OK 73019

Abstract. The category of finite dimensional modules for the proalge-
braic differential Galois group of the differential Galois theoretic closure
of a differential field F' is equivalent to the category of finite dimen-
sional F' spaces with an endomorphism extending the derivation of F.
This paper presents an expository proof of this fact modeled on a similar
equivalence from polynomial Galois theory, whose proof is also presented
as motivation.

1 Introduction
We begin by recalling some notation, definitions, and standard results:
k denotes a field.
K D k is a splitting field, or polynomial Galois extension, for the degree n
monic separable polynomial
p=X"4a, 1 X" '+ 4a; X +ay, a €k
if:

1. K is a field extension of k generated over k by W = {y € K | p(y) =
0} (“generated by solutions”); and

2. pis a product of linear factors in K[X] (“full set of solutions”).

For polynomial Galois extensions, let G(K/k) = Auty(K); note that G(K/k) —
Sn(W) is an injection. Then we have the familiar Fundamental Theorem for poly-

nomial Galois extensions:
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Theorem (Fundamental Theorem for Polynomial Galois Extensions)
Let K D k be a polynomial Galois extension. Then G = G(K/k) is a finite group
and there is a one-one lattice inverting correspondence between subfields M, K D
M D k, and subgroups H of G given by M + G(K/M) and H — KH". If M is
itself a polynomial Galois extension, then the restriction map G — G(M/k) is a
surjection with kernel G(K/M). If H is normal in G, then K is an polynomial
Galois extension.

There is a completely analogous theory for differential fields:

F denotes a differential field of characteristic zero with derivation D = D and
algebraically closed field of constants C.

E D F is a Picard—Vessiot, or Differential Galois, extension for an order n
monic linear homogeneous differential operator

L=Y™ 4q, YO U 4. .. 44V 4V, aeF
if:

1. E is a differential field extension of F generated over F by V = {y € F |
L(y) = 0} (“generated by solutions”).

2. The constants of E are those of F' (“no new constants”).
3. dime (V) = n (“full set of solutions”).

For Picard-Vessiot extensions, let G(E/F) = Aut$®(E); then G(E/F) —
GL(V) is an injection with Zariski closed image.

There is a “Fundamental Theorem” for differential Galois extensions:

Theorem (Fundamental Theorem for Picard—Vessiot Extensions) Let
E D F be a Picard—Vessiot extension. Then G = G(E/F) has a canonical structure
of affine algebraic group and there is a one-one lattice inverting correspondence
between differential subfields K, E D K D F, and Zariski closed subgroups H of G
given by K — G(E/K) and H — E¥. If K is itself a Picard-Vessiot extension,
then the restriction map G — G(K/F) is a surjection with kernel G(E/K). If H
is normal in G, then E¥ is an Picard-Vessiot extension.

There are Fundamental Theorems for infinite extensions as well:

Theorem (Fundamental Theorem for Infinite Polynomial Galois Ex-
tensions) Let k be a field and let K D k be a directed union of polynomial Galois
field extensions of k. Then the group of automorphisms G = G(K/k) has a canon-
ical structure of topological (in fact profinite) group and there is a bijection between
the the set of closed subgroups of G, and the set of subfields of K containing k,
under which a subgroup H corresponds to the subfield K of K fized element-wise
by H and the subfield M corresponds to the subgroup Autpy(K) of G which fizes
each element of M. If M is itself a union of polynomial Galois extensions, then the
restriction map G — G(M/k) is a surjection with kernel G(K/M). If H is (closed
and) normal in G, then M is a union of polynomial Galois extensions.
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Theorem (Fundamental Theorem for Infinite Picard—Vessiot Exten-
stons) Let E D F be a directed union of Picard—Vessiot extensions. Then the
group of differential automorphisms G = G(E/F) has a canonical structure of
proaffine group and there is a one-one lattice inverting correspondence between dif-
ferential subfields K, E D K D F, and Zariski closed subgroups H of G given by
K +— G(E/K) and H — E®. If K is itself an infinite Picard-Vessiot extension,
then the restriction map G — G(K/F) is a surjection with kernel G(E/K). If H is
(Zariski closed and) normal in G, then KH is an infinite Picard—Vessiot extension.
[5]

We shall call these theorems (and their finite dimensional versions stated pre-
viously) “Correspondence Theorem Galois Theory”. These theorems are about the
pair consisting of the base field and the extension . There is a another aspect of
Galois theory, which we will call “Universal Cover Galois Theory”, which focuses
on the base field and hopes to understand all possible (polynomial or differential)
Galois extensions of the base by constructing a closure (or universal cover) and
looking at its group of automorphisms.

The field k has a separable closure, which can be defined as a union of polyno-
mial Galois extensions of k£ such that every polynomial Galois extension of k£ has
an isomorphic copy in it. (More generally, every algebraic separable extension of &
embeds over k in a separable closure of k.)

For various reasons, the direct analogues of “algebraic closure” and its proper-
ties for differential Galois extensions do not hold. However, the following notion is
of interest, and can be shown to exist [7]:

A Picard—Vessiot closure EE O F of F' is a differential field extension which is
a union of Picard—Vessiot extensions of F' and such that every such Picard—Vessiot
extension of F' has an isomorphic copy in F.

For a differential field extension of F' to embed in a Picard—Vessiot closure, it
is necessary and sufficient that it have the same constants as F' and be generated
over F as a differential field by elements that satisfy monic linear homogeneous
differential equations over F' [8, Prop. 13].

As noted, the goal of what we are calling Universal Cover Galois Theory is pro-
duce the (profinite or proalgebraic) Galois group of the (polynomial or differential)
universal cover of the base field. In the next section, we will see how this is done
in the polynomial case, and then in the following how it is done in the differential
case.

1.1 History and Literature. This is an expository article. Section 2 is ba-
sically an account of the special (one point) case of A. Grothendieck’s theory of
Galois categories and the fundamental group. I learned this material from J. P.
Murre’s account of it [9] which is still an excellent exposition. Differential Galois
theory is the work of Ellis Kolchin [4]. For a comprehensive modern introduction,
see M. van der Put and M. Singer [10]. The survey article by Singer [11] is also a
good introduction. Less advanced are the author’s introductory expository lectures
on the subject [6], which is a reference for much of the terminology used here. Sec-
tion 3 is an account of a version of the Tannakian Categories methods in differential
Galois Theory. This originated in work of P. Deligne [3]; there are explanations of
this in both [11] and [10]. A compact explanation of the theory as well as how to
do the Fundamental Theorem in this context is also found in D. Bertrand’s article
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[1]. Information about the Picard—Vessiot closure is found in [7] and [8]. And of
course the standard reference for Galois theory is categories is F. Borceaux and G.
Janelidze [2].

2 The Galois Group of the Separable Closure

The Fundamental Theorems recalled above were called “Correspondence The-
orem Galois Theory”. Even in their infinite forms, they are just special cases of
Categorical Galois Theory [2]. The point of view of Correspondence Theory is from
the extension down to the base: somehow the extension has been constructed and
the group of automorphisms obtained (if only in principle) and then the lattice of
intermediate fields is equivalent to the lattice of subgroups.

Now the naive view of Galois theory, say the one often adopted by students,
is often the opposite: the point of view is from the base up. Despite the fact
that, as Aurelio Carboni for example has noted, Galois Theory is about not solving
equations, not about solving equations, the base up point of view begins with the
base field, the (polynomial or differential) equation and asks for the solutions. Even
though this doesn’t work, let us imagine how to conduct such a project. We will
deal first with the polynomial situation.

Let p = X"+a,_1 X" '+ -+a1 X +ag be a separable polynomial over k which
we will assume has no repeated irreducible factors (and hence no multiple roots).
The set W of roots of p in a separable closure K of k has, by itself, only the structure
of a finite set. The elements of W, however, are not completely interchangeable
(remember we are taking the point of view of the base k): the elements of W are
grouped according to the irreducible factor of p of which they are a root. Within
these groupings they are interchangeable, but there are still limitations, namely
any multivariable polynomial relations (with & coefficients) should be preserved as
well. Of course the “interchanging” we are talking about is the action of the group
mi(k) = G(K/k) on W.

(The reader will note the obvious circularity here: we are trying to describe
the set of roots of p from the point of view of k, and to do so we introduce the
separable closure and its group of k automorphisms. But this means that be have
in principle found the roots not only of p but of every (separable) polynomial over
of k).

It is easy to check that the action of (k) on W is topological (which means
simply that the stabilizers of points are open). And some natural questions arise,
for example, do all finite sets with continuous 7 (k) action come from polynomials
over k, and if so, how? To take up the first, one should consider all finite sets with
m1 (k) action, and therefore the category M(m1(k)) of all of them, morphisms in the
category being (k) equivariant maps. (It is a theorem of Grothendieck [9] that
71 (k) can be recovered from M (m(k)), as we will recall later.)

Now let us ask about how finite sets with continuous m (k) action might come
from polynomials. For the set W = p~1(0) C K we considered above, we could
find p as [,y (X — a). But suppose we start with an arbitrary finite set X with
continuous 71 (k) action. If we want to repeat the above construction, then the first
thing that should be considered is how to embedd X in K, m (k) equivariantly of
course . While we do not know if such a map even exists, it is clear that no one
such should be privileged. Thus the natural thing is to consider the set of all m (k)
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equivariant maps X — K. This set is a ring, under pointwise operations on K, and
is even a k algebra (the latter sitting in it as constant functions).

We use C(X, K) to denote all the functions from X to K. Then the set C(X, K)
is a commutative k algebra under pointwise operations, and m (k) acts on it via
o - ¢(z) = o(¢p(o~ x)). We consider the ring of invariants C(X, K)™®)  which is
the ring of (k) equivariant functions from X to K. Suppose that ¢ is such a
function and z is an element of X. Let {x = z1,...,2,} be the orbit of z and
let H be the intersection of the stabilizers of the x;. Note that H is closed and
normal and of finite index in 7y (k). Then all the ¢(z;) lie in M = K which is
a polynomial Galois extension of k. Since X is a finite union of orbits, it follows,
by taking the compositum of such extensions for each orbit, that there is a finite,
normal separable extension N O k such that C(X, K)™*) = C(X, N)™(*) Now
C(X,N) is a finite product of finite, separable extensions of k, and it follows that
its subalgebra C(X, N)™®) is as well.

In other words, our search for a polynomial related to X led to a commutative
k algebra which is a finite product of finite separable extensions of k. We consider
the category of all such:

Let A(k) be the category whose objects are finite products of finite separable
field extensions of k£ and whose morphisms are k algebra homomorphisms. From
the discussion above, we have a contrafunctor

U=C> K™ M(m (k) — Alk).

On the other hand, for any object A = K x --- x K,, in A(k), we can consider
the set V(A) = Alg;, (A, K). We have that V(A) is a finite set (its cardinality is
the dimension of A as an k vector space) and there is a left m (k) action on F(A),
given by following an embeding by an automorphism of K. All the embedings of
A into K lie in a fixed finite, separable, normal subextension Ky 2O k of K, and
this implies that the action of 71 (k) on V(A) is continuous. Thus we also have a
contrafunctor

V= Alg,(-, K) : A(k) — M(mi(k))
to the category M(mq(k)) of finite sets with continuous 71 (k) action.
We will see that U and V are equivalences of categories.

Here are some properties of the functor V: if Ky O k is a finite separable
extension, then V(Ky) = Alg;, (Ko, K) has cardinality the dimension of K, over k.
If A= K; x--- x K, is a finite product of finite separable extensions of k, then
every homomorphism from A to a field must factor through a projection onto a Kj,
so it follows that V(A) is the (disjoint) union V(K3)II---IIV(K,,) and hence has
cardinality > |[V(K;)| = Y dim(K;) = dimg(A). We also note that since K is the
separable closure of k, V(A) = Alg, (A, K) is always non—empty.

And some properties of the functor U: if X is a finite set with continuous 7 (k)
action and X = X; IT X5 is a disjoint union of two proper (k) subsets, then
the inclusions X; — X induce maps C(X, K) — C(X;, K) which in turn give an
isomorphism C'(X,K) — C(X1,K) x C(X3,K). All these are m (k) equivariant,
and hence give an isomorphism U(X) — U(X;) x U(X32). Now suppose that X
does not so decompose, which means that X is a single orbit, say of the element
x with stabilizer H (which is, of course, closed and of finite index in 71 (k)). Then
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m1(k) equivariant maps from X to K are determined by the image of x, which may
be any element with stabilizer H. Thus C(X, K)™®) — K by ¢ — ¢(z) is a
bijection. Combining this observation with the previous then yields the following
formula for U: If X = X; II---1I X,, is a disjoint union of orbits with orbit
representatives z; with stabilizers H;, then U(X) = [[ K¥:. The index of H; in
71 (k) is both the cardinality of X; and the dimension of K over k, and it follows
that dimy, (U(X)) = | X|. We also note that U(X) = [[ K¢ is always non-zero.

Combining, we have cardinality/dimension equalities, U (V(X))| = |X| and
dimk (V(Z/{(A)) == dimk (A)

We also have “double dual” maps

A—UV(A)) = C(Alg,(A, K),K)”l(k) by a — a, where a(r) = 7(a).
and
X = VU(X)) = Alg, (C(X, K)™ " K) by & — &, where #(¢) = ¢(x).

It follows from the cardinality /dimension equalities that in the case that A is a
field or X is a single orbit that the double dual maps are bijections, and then that
they are bijections in general from the product formulae above.

The above remarks imply that the functors & and V give an (anti)equivalence
of categories, a result which we now state as a theorem:

Theorem (Categorical Classification Theorem) Let k be a field, let K be
a separable closure of k and let w1 (k) = Auti,(K). Then m (k) has a natural topo-
logical structure as a profinite group. Let A(k) denote the category of commutative
k algebras which are finite products of finite separable field extensions of k and k
algebra homomorphisms. Let M(m1(k)) denote the category of finite sets with con-
tinuous 71 (k) action, and m1(k) equivariant functions. Consider the contravariant
functors

U=C> K" M(mi (k) — A(k)
and
V = Alg, (-, K) : A(k) — M(mi(k)).

Then both compositions UV and Vol are naturally isomorphic to the identity using
the double dual maps, and hence the categories A(k) and M(m1(k)) are equivalent.

The proofs of the assertions summarized as the Categorical Classification The-
orem depended on the Fundamental Theorem of Galois Theorem. Conversely, the
Categorical Classification Theorem can be used to prove the Fundamental Theorem:

Suppose Ky D k is a finite, normal, separable extension, and that 7: Ky — K
is an embeding over k. By normality, V(Ky) = Alg, (Ko, K) is a single orbit, and
the stabilizer H of 7 is a closed normal subgroup of 7 (k) with 7y (k)/H isomorphic
to G = Auty(Kp). Also, V(k) = {idx} is a final object. The transitive m (k) sets X
which fit into a diagram V(Ky) — X — V(k) are the 7 (k) sets between m (k)/H
and (k) /7 (k), namely those of the form 7 (k)/K where K is a closed subgroup
of 71 (k) containing H, and thus correspond one—one to subgroups of 71 (k)/H. The
quotients of V(Kj) correspond, by U, to the subobjects of E. Thus once the Cat-
egorical Classification Theorem is available, the Fundamental Theorem of Galois
Theory (for finite field extensions) translates into the simple correspondence be-
tween (homogeneous) quotients of a finite homogeneous space and the subgroups
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of the transformation group. We state this result, noting that it implies the Fun-
damental Theorem of Galois Theory:

Theorem (Fundamental Theorem for Faithful Transitive G Sets) Let
G be a finite group and regard G as a finite set on which G acts transitively and
with trivial stabilizers, and let e be the identity of G. Let Z be a one point set
and p : X — Z a map. Then transitive G sets Y and classes of G equivariant
surjective maps q : G — Y which factor through p are in one—one correspondence
with subgroups H of G as follows: to the subgroup H, make correspond the G set
G/H and the map G — G/H by g — gH; to the surjective G map q : G — X,
make correspond the stabilizer H of q(e).

3 The Galois Group of the Picard—Vessiot Closure

In the preceding section, we saw how the category M(m1(k)) of finite sets on
which the profinite Galois group of the separable closure of k acts continuously was
(anti)equivalent to a category of k algebras. And we recalled that for any profinite
group, the category of finite sets on which it acts continuously determines it. A
similar statement is true about proalgebraic groups: such a group is determined by
the category of vector spaces (or modules) on which it acts algebraically (this is the
general Tannaka Duality Theorem [3]). The group of differential automorphisms
II(F) = G(E/F) of the Picard—Vessiot closure E of the differential field F' is a
proalgebraic group, and it is therefore natural to consider the analogue of the
functors of the preceding section in the differential case.

Thus we consider the category M(II(F)) of finite dimensional, algebraic, II(F’)
modules, and the functor Homy(p)(:, ) defined on it. The proalgebraic group
II(F) is over the field C of constants of F', and the vector spaces in M(II(F)) are
over C. The field F is not a II(F') module, although of course II(F') acts on it, since
not every element in E has a II(F') orbit that spans a finite dimensional C' vector
space. Those elements that do form an F' subalgebra S of F, which is additionally
characterized by the fact that it consists of the elements of E which satisfy a linear
homogeneous differential equation over F' (see [6, Prop. 5.1, p.61], and [8]). Any
II(F) equivariant homomorphism from an algebraic II(F') module to E must have
image in S, so the functor to be considered is actually V(U) = Homp (U, S).

It is clear that V(U), for U an object of M(II(F)), is an abelian group under
pointwise addition of of functions. It is also true that V(U) is an F vector space
via multiplication in the range of functions. We will see below that V(U) is finite
dimensional over F'. The derivation D of E preserves S, and this derivation of S
defines an operator, which we also call D, on V(U) as follows: let f € V(U) and let
u € U. Then D(f)(u) is defined to be D(f(u)). It is easy to check that D on V(U)
is additive and in fact is C' linear. It is not F' linear, but we do have the following
formula: for o € F and f € V(U), D(af) = D(a)f + aD(f).

This suggests we consider the category M(F'- D) of finite dimensional F' vector
spaces V equipped with C linear endomorphisms Dy (usually abbreviated D) such
that for « € F and v € V, D(awv) = D(a)v + aD(v), morphisms being F linear
maps which commute with D action. We call objects of M(F - D) F - D modules,
and morphisms of M(F - D) F - D morphisms. (Sometimes F - D modules are
known as connections [11, 2.4.1 p.536].) The contrafunctor V sends all objects and
morphisms M(II(F)) to M(F - D) (we still have to establish that V(U) is always
finite dimensional over F'). We note that, except for the finite dimensionality, S is
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like an object in M(F - D) in that it has an operator D satisfying the appropriate
relation, and for an object in M(F - D) we will use Homp.p(V, S) to denote the F'
linear D preserving homomorphisms from V to S.
It is clear that Homp.p(V,.S) is an abelian group under pointwise addition of
functions, and a C' vector space under the usual scalar multiplication operation.
The group II(F) acts on Homp.p(V, S): for o € II(F),T € Homp.p(V, S), and
v € V, define o(T)(v) = o(T(v)). We will see later that Homp.p(V, S) is a finite
dimensional C' vector space, and that the action of II(F') on it is algebraic. Thus
we will have a contrafunctor U(V') = Homp.p(V, S) from M(F - D) to M(II(F)).
The pair of functors U and V), therefore, are the analogues for the differential
Galois case of the corresponding functors in the polynomial Galois case. And we
will see that, as in the polynomial Galois case, both V(-) and U(+) are equivalences.
We begin by describing the II(F)-module structure of S, and for this we now
fix the following notation:

Notation 1 Let IT denote II(F), the differential Galois group of the Picard-
Vessiot closure E of F, and let I’ denote its identity component and IT = I1/I1°
the profinite quotient. .

We denote the algebraic closure of F' by F. We regard F as emdedded in S,
where it is a II submodule and, since also F = SHO, a Il module. Therefore, when
we need to regard F' as a trivial IT module we will denote it F.

Proposition 1 In Notation (1),

1. Fy@p S F;®c C[Il] as F; algebras and I1 modules

2. S F®c C[I° as F algebras and 11° modules

Proof Statement (1) is the infinite version of Kolchin’s Theorem, [9, Thm.
5.12, p.67] . Since E is also a Picard—Vessiot closure of F', whose corresponding ring
is S as an F algebra, statement (2) is Kolchin’s Theorem as well. O

We can analyze the functor V : M(II) — M(F - D) using the structural de-
scription of the preceding theorem: since V(U) = Homp (U, S) we have

V(U) = Homp (U, S) = (Hompo (U, S))™
= (Hommo (U, F ®¢ C[II°))T
= (F ®¢ Hommo (U, C[TI°))T (V factor)

(For the third equality of (V factor) we used the isomorphism of Proposition
(1)(2), and for the final equality of (V factor), we used the fact that U was finite
dimensional.)

Using the decomposition (V factor), it is a simple matter to see that V is exact:

Proposition 2 The contrafunctor V : M(II) — M(F - D) is exact. Moreover,
V(U) is F finite dimensional with dimp(V(U)) = dime(U)

Proof In (V factor), we have factored V as the composition of four functors:
first the forgetful functor from IT modules to I1° modules, then U + Hompo (U, C[I1°]),

() — F ®¢ (-), and (-) — (-). The first of these is obviously exact. For exactness
of the second, we use that C[I1°] is an injective II° module (in fact, for any finite
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dimensional algebraic II° module W the map Homppo (W, C[II°]) — (W)* by eval-
uation at the identity is a C' isomorphism to the C' linear dual of W). The third
functor is also obviously exact. Since our modules are over a field of characteristic
zero, taking invariants by a profinite group is also exact, and hence the final functor
is exact as well.

To compute dimensions, we note that dimp(V(U)) = dimz(V(U) ®@F F), then
that V(U) @ F = Homp(U, S) @ F = Homp (U, F; ®F S), and by Proposition
(1)(1), this latter is Homp (U, F; ®¢ C[l]) = Homp (U, C[ll]) ®c F = U* ®@¢ F,
which has the same dimension over F as U does over C. O

Now we turn to the functor i = Homp.p(-,S), and we will see that it also is
exact and preserves dimensions. For both of these, we will need a few comments
about cyclic F'- D modules:

Remark 1 An F' - D module W is cyclic, generated by x, if W is the smallest
F-D submodule of W containing x. For any F-D module V and any element x € V,
the F' span of its derivatives ) .- FDi(x) is a cyclic F - D module, generated by
z. Ifn = dimp(V), and {D°z, D'z, ..., D*"'2} is a mazimal linearly independent
set, then there are elements o; € F with DFg4ap_1DF x4+ -+a9D% = 0. Note
that k < n. We refer to the differential operator L = YR fap  YED 4o 4agY
as the differential operator corresponding to x in V.

Now we turn to exactness of U

Proposition 3 The contrafunctor U : M(F - D) — M(II) is exact.

Proof Since U, being a “Hom into” functor, is right exact, what we need
to show is that it carries monomorphisms V; — V5 into epimorphisms. We can
assume that the monomorphism is an inclusion and that V5 is generated over V; by
a single element x (that is, that V4 is the sum of V; and the cyclic submodule of V5
generated by x.) We suppose given an F - D morphism T3 : V; — S. We consider
the symmetric algebras over F' on V; and Vs, which we denote F[V;] and F[V3].
The D operators on the V; extend to derivations of the F[V;], and T} extends to
a differential homomorphism h : F[V;] — S. We have F[V;] C F[V3] (this is split
as a extension of polynomial algebras over F'), and F[V3] is generated over F[V;]
as a differential algebra by x, which is denoted F[V] = F[Vi]{z}. We will also use
h for the extension of h to the quotient field F of S. Let P be the kernel of h,
let F[V4] = F[V4]/P and let F[V,] = F[V,]/PF[V2]. (Since PF[V] is a differential
ideal, this latter is a differential algebras.) If T denotes the image of x in F[V3],
then F[V3] = F[V1]{Z}. Now we extend scalars to E:

R = E @pry FVil{z}

Note that R is finitely generated as an algebra over E. This implies that if @ is any
maximal differential ideal of R, then the quotient field K of R/Q is a differential
field extension of E with the same constant field C [6, Cor. 1.18, p. 11 ]. By
construction, K is generated over E as a differential field by the image y of Z. Now
x, and hence T and y, is the zero of a linear differential operator L of order k, the
operator corresponding to x defined above in Remark (1). On the other hand, E
already contains a Picard—Vessiot extension of F' for L, and hence a full set of zeros
of L (that is, of dimension k over C). Since K has no new constants, the zero y of
L must belong to this set and hence y € E. But this then implies K = E. Thus we



10 Andy R. Magid
have a differential F' algebra homomorphism f : F[V3] — F[Va] = R — R/Q — F,
and by construction f restricted to F[V4] is h. Moreover, the image y of z lies in
S (since it satisfies a differential equation over F') and hence f has image in S.
Finally, the restriction 75 of f to V5 is an F'- D morphism from V5 to S extending
T, : V1 — S. It follows that U/ is left exact, as desired. O

Using exactness, we can also show how U preserves dimension:
Proposition 4 U(V) is C finite dimensional with dimc(U(V)) = dimp(V)

Proof By Proposition (3), U is exact, and since dimension is additive on exact
sequences, we can reduce to the case that the F'- D module V is cyclic with generator
x. Then, by Remark (1), V has F basis { D%, D'x,..., D*~!'z} and corresponding
linear operator L = Y*) 4+ o, Y*=D 4 ... 4 ayY. Then an F - D morphism
V — S is determined by the image of x, which is an element of S sent to zero
by L, and every such element of S determines a morphism. Thus U(V) is the
zeros of L in S, which is the same as the zeros of L in E. Since E contains a
Picard—Vessiot extension of F' for L, and hence a complete set of solutions, we have
dime(U(V)) = dime(L71(0)) = k = dimp (V). O

Both U and V involve a “duality” into S, and hence a “double duality” which
we now record, and use to prove that the functors are equivalences.

Theorem 1 1. The function V. — V(U(V)) = Homp(Homp.p(V,S),S)
by v 0, 0(T) =T(v) is an F - D isomorphism natural in V.

2. The function U — UV (U)) = Homp.p(Homp (U, S),S) by v — 4, 4(¢) =
¢d(u) is a II isomorphism natural in U.

In particular, U andV are category equivalences between the categories M(F-D)

and M(II(F)).

Proof We leave to the reader to check that the maps v — © and u — « are
well defined and natural in V and U. To see that they are isomorphisms, we use
the fact that V ol and U oV are exact to reduce to the case of checking the
isomorphism for non—zero simple modules, and then use the fact that V o/ and
U oV preserve dimension to reduce to showing that both double dual maps are
non-zero. For (1), this means that there is a non—zero T' € Homp.p(V, S) = U(V).
But since dime(U(V)) = dimp (V) # 0, this holds. For (2), this means that there
is a non—zero ¢ € Homp (U, S) = V(U). Since dimp(V(U)) = dime(U) # 0, this
holds as well. Thus the theorem is proved. O

Theorem (1) tells us that the category of II(F) modules is equivalent to the
category of F'-D modules. As we mentioned above, the proalgebraic group II(F') can
be recovered from its category of modules M(II(F')) by the Tannaka Duality. We
review this construction briefly: a tensor automorphism of M(II(F)) is a family of
vector space automorphisms oy, U € |[M(II(F))|, one for each object in M(II(F)),
such that

1. For any II(F) homomorphism ¢ : U — U’ we have oy¢ = ¢poy, and

2. For any II(F) modules U and U’, we have oygu: = oy ® oy
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An example of a tensor automorphism is Idy, U € |[M(II(F)).

The composition of tensor automorphisms are tensor automorphisms (composi-
tion of oy, U € |IM(IL(F))|. and 1, U € |\M(IL(F))| is oy, U € |IM(IL(F))|) and
so are inverses, and the tensor automorphism Idy, U € |[M(II(F))| is an identity for
composition. Thus the tensor automorphisms form a group, denoted Autg (II(F)).
For notational convenience, we will denote the element of Autg(II(F)) given by
oy, U € |M(II(F))| simply as o

IfU € |MII(F))|,and w € U and f € U*, then we can define a function m,,
on Autg (II(F)) by my, ¢(o) = f(ou(w)). The C algebra of all such functions is de-
noted C[Autg (II(F))]. One shows, as part of Tannaka Duality, that C[Autg (II(F))]
is the coordinate ring of a proalgebraic group structure on Autg (II(F)).

For any g € II(F) and any U € |[M(II(F))|, let L(g)y denote the left action of
gon U. Then L(g)y,U € |[M(II(F))| is a tensor automorphism, and L : II(F) —
Autg (TI(F)) is a group homomorphism. Tannaka duality proves that L is actually
a group isomorphism (of proalgebraic groups). Thus the proalgebraic group II(F')
is recovered from the category M(II(F")) modules. (This procedure works for any
proalgebraic group.)

Because of the importance of the tensor product in the Tannaka Duality, we
record how the tensor products in M(F - D) and M(II) interact with the functors
U and V.

Proposition 5 There are natural (and coherent) isomorphisms
1. V(Uy) ®@p V(Us) — V(Uy ®c Us), and

2. UV1) @c U(Va) = U(VL @F Va).

Proof The map in (1) is defined as follows: if ¢; € Homp (U;, S), then ¢1 @ p ¢2
is sent to the function in Homp(U; ®¢ Us, S) given by uy ® us — é1(uy)da(uz).
Since V(U1) ®p V(Usz) and V(U; ®¢ Us) have the same dimension over F' (namely
that of U; ®¢ Uz over C), to see that the map is an isomorphism it suffices to see
that it is injective. To that end, we tensor it over F' with F;. Then we consider
successively:

(Homp (Uy, S) @ Hompy(Us, S)) @ Fy — Homp (U ®@c Us, S) @5 Fy

we distribute F; over the tensors and inside the Hom’s

(HOHIH(Ul, S) RE Ft) ®ft (HOmH(U27 S)) RF Ft) — HOIDH(U1 ®c Us, S®p Ft)
then we apply Proposition (1) (1)

Homp (U, Fﬂ@cO[H]) ®F, Hompy (Us, Fﬂ@cC[HD) — Homp (Uy ®CU2,Ft®CO[HD
and finally use that spaces of II maps into C[II] are duals

(HomC(Ul, Ft) ®f£ HOmC(U27 Ft) — HomC(U1 ®c Us, Ft).

And this final map is, of course, an isomorphism. This proves (1).
The map in (2) is defined similarly: if 7; € Homp.p(V;,S) then T @p Th
is sent to the function in Homp.p(Vi ® V2,5) given by v1 ® ve — T1(v1)Ts(va).
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To prove (2), we may assume that V; = V(U;), so we are trying to show that
UYV()) @c UV(Uz)) = UV (U1) ®F V(Uz)) is an isomorphism. Note that the
domain is, by Theorem (1) (2), Uy ®¢ Us. On the other hand, if we apply V to (1),
then we have an isomorphism U(V(U1 ®c Usz)) — U(V(U1) ®F V(Us)). Here again,
by Theorem (1) (2) the domain is U; ®¢ Us. It is a simple matter to check that
both maps are the same, and hence conclude (2). O

4 Conclusion

We try to set some of the above in perspective. We consider the problem of
understanding the proalgebraic differential Galois group II(F) of a Picard—Vessiot
closure of F. By Tannaka Duality, TI(F') is determined by and recoverable from
its category M(II(F)) of finite dimensional over C algebraic modules — the ten-
sor product over C' in M(II(F)) being an essential part of the structure. The
(anti)equivalence U and its inverse V show that the category M(F - D) of finite
dimensional F' spaces with an endomorphism compatible with the derivation on F'
is (anti)equivalent to the category M(IL(F)). In other words, we might say that
every finite dimensional F - D module has a “secret identity” as a II(F') module
(more appropriately, perhaps, a “dual secret identity”, since the equivalences are
contravariant). And this identification includes converting tensors over F' of F' - D
modules into tensors over C' for II(F') modules. It follows, at least in principle, that
the group II(F) is determined by, and determines, the category of F'- D modules.
So everything that could be learned about F from the group II(F') can be learned
by studying F - D modules.

We would also like to tie this observation about differential Galois theory with
our earlier discussion of polynomial Galois theory. In that case, we began by con-
sidering sets of solutions of polynomial equations in isolation, that is, simply as
finite sets, and then found that the structure necessary to tell these “disembodied
sets of solutions” from unstructured finite sets was an action of the Galois group of
the separable closure. In the same way, modules for the differential Galois group
are like “disembodied sets of solutions” for differential equations. But unlike the
situation with the polynomial equations, where duality with respect to the closure
leads from solution sets to extension fields (actually finite products of extension
fields), in the differential case duality with respect to the closure lead from solution
spaces to F' - D modules, which are more like “disembodied differential equations”
(see Remark (1)) than extensions. There is a way to pass from F - D modules to
extensions (we saw some of this construction in the proof of Proposition (3)): for
an F - D module V, we form the F symmetric algebra F[V] = Sp[V]. This F
algebra has a derivation extending that of F, and if we mod out by a maximal
differential ideal @ we obtain a differential F' integral domain whose quotient field
has the same constants as F'. One can then show that this domain embeds in a
Picard—Vessiot closure of F' [8, Prop. 13], and in particular into a Picard—Vessiot
extension of F'. Different choices of ) are possible, of course. But each arises from
a differential F' algebra homomorphism from F[V] to the Picard—Vessiot closure of
F and hence from differential F' algebra homomorphisms F[V] — S. (Since these
latter correspond to F' - D module homomorphisms V' — S, we see our functor U.)
One should regard the whole collection of these homomorphisms, or at least all
their images, as the corresponding object to the (finite product of) field extensions
in the polynomial case.
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