Instructions

- Explain your answers clearly. Credit will be given only if you provide sufficient justification for your answers.
- Calculators, phones, laptops, gaming consoles and other electronic gadgets are not permitted and should be turned off during the exam.

1. [8 points] In each of the following indicate whether the statement is True or False. Explain your reasoning in one line.
 (a) The function \(f(x, y) = \frac{1}{y} e^{xy} \) has no critical points.
 (b) Every saddle point of a given function of two variables is a critical point.
 (c) The region \(\{(x, y)| 0 < x < 2, 0 \leq y \leq 4\} \) is closed and bounded.
 (d) If \(R = [0, 1] \times [0, 1] \) then
 \[
 \int\int_R \left(\frac{1 + x^2}{1 + y^2} \right) \, dx \, dy = \int_0^1 (1 + x^2) \, dx \int_0^1 \frac{1}{1 + y^2} \, dy.
 \]

Solution:

(a) True. We have \(f_x = e^{xy} \) and \(f_y = \left(\frac{x}{y} - \frac{1}{y^2} \right) e^{xy} \) and since \(e^{xy} \neq 0 \), there are no critical points.

(b) True. A saddle point is a critical point which is neither a local minimum or a local maximum.

(c) False. The region can be enclosed in a circular disk, so it is bounded. It is not closed because not all boundary points are contained in the region.

(d) True. This is a special case of Fubini’s Theorem.
2. [8 points] Find the points on the surface \(z^2 = 1 + 3xy \) which are closest (that is, at the shortest distance) to the origin \((0, 0, 0)\).

Solution: Let \(P(x, y, z) \) be a point on the given surface. The distance from the origin to \(P \) is given by \(d(x, y, z) = \sqrt{x^2 + y^2 + z^2} \). Now, since \(P(x, y, z) \) lies on the given surface, we have \(d(x, y, z) = \sqrt{x^2 + y^2 + 1 + 3xy} \). We would like to minimize this function but it is easier to look at the square of the distance function:

\[
f(x, y) = x^2 + y^2 + 3xy + 1
\]

We have \(f_x = 2x + 3y \) and \(f_y = 2y + 3x \), thus the only critical point is \((0, 0)\). Also \(f_{xx} = 2, f_{yy} = 2 \) and \(f_{xy} = 3 \). Thus, \(D = 4 - 9 < 0 \), so we can’t use the second derivative test. However, when \(x = 0, y = 0 \), we have \(z = \pm 1 \) and the points \((0, 0, \pm 1)\) are at a distance of 1 from the origin. Notice also that \(x^2 + y^2 + 3xy = (x+y)^2 + xy \geq 0 \). Hence by inspection, we see that \((0, 0, \pm 1)\) are the points on the surface closest to the origin.
3. [9 points] Find the absolute minimum and maximum values of the function

\[f(x, y) = x^2 - xy - 3y + y^2 \]

on the closed triangular region with vertices (1, 0), (3, 0) and (3, 2).

Solution: The triangular region \(D \) can be described by

\[D = \{(x, y)| 1 \leq x \leq 3, \ 0 \leq y \leq x - 1\}. \]

Let’s first find critical points of \(f \) on the interior of \(D \). We have \(f_x = 2x - y \) and \(f_y = -x - 3 + 2y \). Thus, the only critical point is \((1, 2)\). However, notice that this point lies outside the region \(D \) so we need not consider it.

Next, we find the extreme values of \(f \) on the boundary of \(D \). Let \(L_1 \) be the segment joining \((1, 0)\) and \((3, 0)\), let \(L_2 \) be the segment joining \((3, 0)\) and \((3, 2)\) and let \(L_3 \) be the segment joining \((1, 0)\) and \((3, 2)\).

On \(L_1 \) we have \(y = 0 \), so the function is \(f(x, 0) = x^2 \), which is increasing. Thus, the minimum and maximum values of \(f \) on \(L_1 \) are 1 and 9 respectively.

On \(L_2 \), we have \(x = 3 \) and the function is \(f(3, y) = y^2 - 6y + 9 \). The maximum and minimum values of the function on \(L_2 \) are 9 and 1.

On \(L_3 \), we have \(y = x - 1 \) and the function is \(f(x, x - 1) = x^2 - 4x + 4 = (x - 2)^2 \). The maximum and minimum values are 1 and 0 respectively.

Hence, the absolute maximum and absolute minimum values of \(f \) on the given region are 9 and 0.
4. [8 points] Use Lagrange multipliers to find the extreme values of the function \(f(x, y) = 2x^3 + y^4 \) subject to \(x^2 + y^2 = 16 \).

Solution: Let \(g(x, y) = x^2 + y^2 \). Then, Lagrange Multiplier equations \((f_x = \lambda g_x, f_y = \lambda g_y, g(x, y) = 16) \) yield

\[
\begin{align*}
6x^2 &= 2\lambda x \\
4y^3 &= 2\lambda y \\
x^2 + y^2 &= 16.
\end{align*}
\]

The first two equations can be written as \(2x(\lambda - 3x) = 0 \) and \(2y(\lambda - 2y^2) = 0 \). This means that, either \(x = 0 \) or \(x = \frac{\lambda}{3} \) and \(y = 0 \) or \(y = \pm \sqrt{\frac{\lambda}{2}} \). Since \(x = 0, y = 0 \) does not satisfy the constraint equation, we have the following three cases:

1. \(x = 0, y \neq 0 \). In this case, \(y^2 = \frac{\lambda}{2} \). Substituting this in the constraint equation, we get \(\lambda = 32 \) and thus \(y = \pm 4 \). Thus, \((0, \pm 4) \) are solutions.

2. \(x \neq 0, y = 0 \). In this case, \(x = \frac{\lambda}{3} \) and substituting in the constraint equation, we get \(\lambda = \pm 12 \), so \((\pm 4, 0) \) are also solutions.

3. \(x \neq 0, y \neq 0 \). In this case, \(x = \frac{\lambda}{3} \) and \(y = \sqrt{\frac{\lambda}{2}} \). Substituting in the constraint equation, we get

\[
\frac{\lambda^2}{9} + \frac{\lambda}{2} = 16, \quad \text{or} \quad \lambda^2 + 9\lambda - 16 = 0
\]

from which, we get \(\lambda \) and find other solutions as well.

You can now substitute these solutions into the function one-by-one and find maximum and minimum values.
5. [9 points] Find the volume of the solid lying under the surface \(z = y\sqrt{x} \) and above the region \(D \) in the \(xy \)-plane bounded by the parabolas \(y = x^2 \) and \(x = y^2 \).

Solution: The region \(D \) is given by

\[\{(x, y) | 0 \leq x \leq 1, \ x^2 \leq y \leq \sqrt{x}\} . \]

The volume \(V \) of the given solid is

\[
V = \int\int_{D} y\sqrt{x} \, dA = \int_{0}^{1} \int_{x^2}^{\sqrt{x}} y\sqrt{x} \, dy \, dx = \int_{0}^{1} \sqrt{x} \left(\frac{y^2}{2}\right)_{x^2}^{\sqrt{x}} \, dx = \frac{6}{55}.
\]
6. [8 points] Evaluate the double integral by reversing the order of integration

\[\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{y e^{x^2}}{x^3} \, dx \, dy. \]

Solution: The region \(D \) over which the double integral is being taken can be expressed as

\[D = \{(x, y) | 0 \leq y \leq 1, \sqrt{y} \leq x \leq 2\}, \]

which is a Type I region. To reverse the order of integration, we write \(D \) as a Type II region. It is given by the region below the parabola \(y = x^2 \) and above the \(x \)-axis. That is,

\[D = \{(x, y) | 0 \leq x \leq 1, 0 \leq y \leq x^2\}. \]

Hence,

\[\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{y e^{x^2}}{x^3} \, dx \, dy = \int_{0}^{1} \int_{0}^{x^2} \frac{y e^{x^2}}{x^3} \, dy \, dx = \int_{0}^{1} \left(\frac{y^2 e^{x^2}}{2x^3} \right)_{0}^{x^2} \, dx = \frac{1}{2} \int_{0}^{2} x e^{x^2} \, dx = \frac{1}{4} (e^4 - 1). \]
7. [Bonus problem, 8 extra points] Find the volume of the solid tetrahedron bounded by the planes \(x + 2y + z = 2 \), \(x = 2y \), \(x = 0 \) and \(z = 0 \).

Solution: The tetrahedron has vertices \((1, \frac{1}{2}, 0)\), \((0, 1, 0)\), \((0, 0, 2)\) and \((0, 0, 0)\). The projection of the solid on the \(xy \) plane is the triangular region \(D \) bounded by line segments joining \((0, 0)\), \((1, \frac{1}{2})\) and \((0, 1)\). We can express \(D \) as

\[
\left\{ (x, y) \mid 0 \leq x \leq 1, \frac{x}{2} \leq y \leq -\frac{x}{2} + 1 \right\}
\]

which is a Type I region. Now, the bounded on \(z \) are \(2 - x - 2y \) and 0. Hence, the volume \(V \) is

\[
V = \int \int_D \left(\int_0^{2-x-2y} 1 \, dz \right) \, dA = \int_0^1 \int_0^{-\frac{x}{2} + 1} (2 - x - 2y) \, dy \, dx
\]

\[
= \int_0^1 \left(2y - xy - y^2 \right)_{-\frac{x}{2}}^{\frac{x}{2} + 1} \, dx = \int_0^1 (x - 1)^2 \, dx = \frac{1}{3} (x - 1)^3 \bigg|_0^1 = \frac{1}{3}.
\]