Topics for Qualifying Exam in Topology (Last update: 10-23-2023)

This is the syllabus for the qualifying exam in topology. Some possible textbooks are *Topology* (second edition) by Munkres and *Algebraic Topology* by Hatcher (chapters 0 and 1). The book *Algebraic Topology: An Introduction* by Massey is also recommended, as it provides more detail than Hatcher in some areas. Some additional resources are listed in the second page.

General Topology

- I. Topological spaces and continuous maps (Munkres, sections 12-22)
 - Topological spaces, bases, subbases, order topology, subspace topology
 - Closed sets and limit points, Hausdorff spaces
 - The product topology, maps into product spaces, box topology
 - Continuous maps, homeomorphisms, local continuity, pasting lemma, maps into products
 - Metric spaces, uniform topology
 - The quotient topology, quotient spaces, quotient maps, maps out of quotient spaces
- II. Connectedness and compactness (Munkres, sections 23-29)
 - Connected spaces, connectedness of products, components and local connectedness
 - Connected subspaces in $\mathbb R$, intermediate value theorem, path connectedness
 - Compact spaces: continuous maps, products, tube lemma, finite intersection property
 - Various notions of compactness (compact, sequentially compact, limit point)
 - Extreme value theorem, Lebesgue number lemma
 - Local compactness, one-point compactification
- III. Countability and separation axioms (Munkres, sections 30-32)
 - 1. First and second countability axioms
 - 2. Separable, Hausdorff, regular spaces, normal spaces
- IV. Urysohns Lemma and applications (Munkres, sections 33-36)
 - Urysohn Lemma
 - Urysohn Metrization Theorem (statement only)
- V. Other topics (Munkres, sections 37, 46)
 - Tychonoff theorem (statement only)
 - Topologies on function spaces: pointwise convergence, uniform convergence on compact subsubspaces, compact-open topology, the evaluation map, induced maps

Algebraic Topology

- I. Some basic geometric notions (Hatcher, Chapter 0)
 - Homotopy and homotopy equivalences,
 - CW complexes
 - Retractions and deformation retractions
- II. The fundamental group (Hatcher, section 1.1; Munkres, sections 51-60;)
 - Paths and homotopies of paths, properties
 - Fundamental group, induced homomorphisms
 - Fundamental group of the circle (via a covering space)
 - Brouwer fixed point theorem, Borsuk-Ulam theorem, applications
- III. Van Kampen theorem (Hatcher, section 1.2; Munkres, sections 69-73)
 - Free products of groups
 - Van Kampen theorem and examples
 - Fundamental groups of CW complexes
- IV. Covering spaces (Hatcher, section 1.3; Munkres, sections 53-54, 79-82; Massey chapter 5, sections 3-6)
 - Definition and basic properties covering spaces
 - Path lifting and uniqueness
 - Injectivity of induced map on fundamental group
 - The lifting criterion, uniqueness of lifts
 - Classification of coverings spaces (Galois correspondence)
 - Universal cover, semilocally simply connected, locally path connected, simply connected, contractible
 - Regular and irregular covering spaces including examples
 - Group actions and deck transformations

Books

- Topology (2nd edition), J. Munkres
- Algebraic Topology, A. Hatcher
- Algebraic Topology: An Introduction, W. Massey
- Counterexamples in Topology, Steen and Seebach
- Topology, K. Jänich and S. Levy
- A First Course in Algebraic Topology, C. Kosniowski