Qualifying exam Topology January 2024

Name:

- (a) Please provide proofs for all your answers and claims;
- (b) All subsets of \mathbb{R}^n are given the subspace topology unless stated otherwise.
 - 1. (3+3 points) Let $x_n \in X$ be a convergent sequence. (a) Fix $y \in X$ such that $x_n \to y$. Is $Y = \{y\} \cup \{x_n : n \ge 1\}$ compact? (b) Is $Z = \{z \in X : x_n \to z\} \cup \{x_n : n \ge 1\}$ compact?
 - 2. (2+2 points) Consider the points

$$x^{(n)} = (0, 0, \dots, 0, 1, 1, \dots) \in X = \mathbb{R}^{\omega}$$

(*n* zeros initially, followed by ones only). Does the sequence $x^{(n)}$, $n \ge 1$, converge when X is given the: (a) product topology; (b) box topology?

3. (3+2 points) Let X be a T₁ space (= points are closed) whose topology has a basis consisting of sets that are both open and closed.
(a) Show that X is totally disconnected (= the connected components are one point sets).
(b) Cive an example of such a space that is not discrete.

(b) Give an example of such a space that is not discrete.

4. (3+2 points) (a) Consider the equivalence relation $0 \sim 1$ on \mathbb{R} (more explicitly: $x \sim y \iff x = y$ or x = 0, y = 1 or x = 1, y = 0). Show that the quotient space \mathbb{R}/\sim is not homeomorphic to \mathbb{R} .

(b) Find a non-trivial equivalence relation \sim on \mathbb{R} (non-trivial means that there are $x \neq y, x \sim y$) for which $\mathbb{R}/\sim \cong \mathbb{R}$.

- 5. (2+2+2 points) Let $p: X \to Y$, p(x) = y, be a continuous map, and denote the induced homomorphism between the fundamental groups by $p_*: \pi_1(X, x) \to \pi_1(Y, y)$. True or false? Please give a proof or a counterexample:
 - (a) If p is injective, then so is p_* ;
 - (b) If p is surjective, then so is p_* ;
 - (c) If p is bijective, then so is p_* .

6. (3+3 points) (a) Show that a retract of a contractible space is contractible.

(b) Deduce from the result of part (a) that $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is not a retract of $\overline{D} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}.$

7. (2+3 points) Find the fundamental groups π₁(X, x) of the following spaces. Suggested method: Relate these spaces to familiar ones by using the notion of a deformation retract.
(a) a guilinder X = C defined as the quotient of the square Q =

(a) a cylinder X = C, defined as the quotient of the square $Q = \{(x, y) \in \mathbb{R}^2 : -1 \leq x, y \leq 1\}$ by the equivalence relation $(-1, y) \sim (1, y)$;

(b) a punctured cylinder $X = C \setminus \{p\}$, where p is the point represented by (0,0).

8. (4 points) Apply the Seifert-van Kampen theorem to find the fundamental group $\pi_1(X, x)$ of a square with diagonals. More formally, we can define X as the following subset of \mathbb{R}^2 :

$$\begin{split} X = & \{(x,0): 0 \le x \le 1\} \cup \{(1,y): 0 \le y \le 1\} \cup \{(x,1): 0 \le x \le 1\} \\ & \cup \{(0,y): 0 \le y \le 1\} \cup \{(d,d): 0 \le d \le 1\} \cup \{(d,1-d): 0 \le d \le 1\} \end{split}$$

9. (2+4 points)(a) Let X be a compact space and suppose that $D \subseteq X$ is a closed set that becomes a discrete topological space with the subspace topology. Prove that D is finite.

(b) Let $p: E \to B$ the universal cover of B, with E, B being path connected, locally path connected T_1 spaces. Assume that E is compact. Show that then $\pi_1(B, b)$ is finite.