Qualifying exam Topology August 2023

Name:

(a) Problems 6(a), 9: just the answers are sufficient, no explanations are required;

(b) All other problems: please provide proofs for all your answers and claims; (c) All subsets of \mathbb{R}^n are given the subspace topology unless stated otherwise.

1. (2+2 points) Consider the real line with the standard topology (this space will be denoted by \mathbb{R}) and with the topology with basis $\mathcal{B} = \{[a,b) : a < b\}$ (denoted by \mathbb{R}_{ℓ}). Are the following functions continuous?

(a)
$$f : \mathbb{R} \to \mathbb{R}_{\ell}, \quad f(x) = x;$$

(b) $g : \mathbb{R}_{\ell} \to \mathbb{R}, \quad g(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$

2. (2+2 points) (a) Is \mathbb{Q} a quotient of \mathbb{Z} (that is, is there an equivalence relation \sim on \mathbb{Z} such that $\mathbb{Q} \cong \mathbb{Z}/\sim$, or, equivalently, is there a quotient map $p : \mathbb{Z} \to \mathbb{Q}$)?

(b) Is \mathbb{Z} a quotient of \mathbb{Q} ?

3. (3+2 points) Let X be a Hausdorff space that is locally compact but not compact, and let Y be its one-point compactification. (a) Show that if X is connected, then so is Y.

(b) Is the converse also true? Give a proof or a counterexample.

- 4. (2+2+2 points) Let X = (-1,1) ⊆ ℝ. (a) Find a metric on X that generates the standard topology and makes X a complete space.
 (b) Find a metric on X that generates the standard topology and makes X an incomplete space.
 (c) Is there such a metric, as in part (b), on Y = [-1,1]?
- 5. (2+2+2+2 points) Find the fundamental groups π₁(X, x) of the following spaces. Suggested method: Find a familiar space that is a deformation retract of X.
 (a) a cylinder X, defined as the quotient of the square Q = {(x, y) ∈

(a) a cylinder X, defined as the quotient of the square $Q = \{(x, y) \in \mathbb{R}^2 : -1 \le x, y \le 1\}$ by the equivalence relation $(-1, y) \sim (1, y)$;

(b) a Möbius band X, defined as the quotient of Q by $(-1, y) \sim (1, -y)$; (c) $X = \mathbb{R}^3 \setminus \{A_x \cup A_y \cup A_z\}$, where $A_x = \{(a, 0, 0) : a \ge 0\}$ denotes the non-negative x-axis etc.; (d) the numerical projective plane $X = \mathbb{R}^2 \setminus \{x\}$

(d) the punctured projective plane $X=P^2\setminus\{p\}$

6. (1+4 points) Write p = (0,0), x = (2,0), q = (3,0), and let $X = \mathbb{R}^2 \setminus \{p\}$. (a) What is $\pi_1(X, x)$?

(b) Explain how the result form part (a) can also be obtained by applying the Seifert-van Kampen theorem to the decomposition $X = U \cup V$, $U = X \setminus \{q\}, V = B(q, 2)$ (the open disk of radius 2 about q).

- 7. (4 points) Show that every continuous map $f: P^2 \to S^1$ is nulhomotopic (= homotopic to a constant map). Suggestion: Try to lift f to the universal cover of S^1 .
- 8. (4 points) Denote the closed unit disk by $\overline{D} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$, and let $p : \overline{D} \to X$ be a covering map. Show that X is homeomorphic to \overline{D} . Suggestion: Investigate the group of covering transformations.
- 9. (4 points) True or false? Four correct answers are sufficient for full credit here, so you don't have to answer every question. However, I will deduct one point for each incorrect answer in excess of one, so please be careful taking guesses.

	True	False
If X can be embedded in Y and Y can be embedded in X , then X and Y		
are homeomorphic.		
Denote the projection maps from a product space by $p_{\alpha} : \prod_{\beta} X_{\beta} \to X_{\alpha}$.		
If $p_{\alpha}(U)$ is open in X_{α} for all α , then U is open in the product topology.		
If X is a compact Hausdorff space, then every quotient of X satisfies T_1		
(= points are closed).		
If X has infinitely many connected components, then there is a continuous		
surjective map $f: X \to \mathbb{Z}$.		
If X is connected, then X is locally connected.		
Let $p: E \to B$ be a covering map. If $p(x) = p(y)$, then there is a unique		
covering transformation $\varphi: E \to E$ with $\varphi(x) = y$.		
Let X be path connected and locally path connected. If X has a universal		
cover, then given any $x \in X$ and any neighborhood V of x, there is a simply		
connected neighborhood $U \subseteq V$ of x .		