TOPOLOGY QUALIFYING EXAM — JANUARY 2023

1. Definitions and examples

Please clearly state definitions, and describe your examples precisely. Solve *all* problems in this section.

Problem 1.1. Define what it means for a topological space to be *compact*. Let \mathbb{R}^2 have the standard (euclidean) topology and let $\mathrm{pr}_1 : \mathbb{R}^2 \to \mathbb{R} : (x, y) \mapsto x$ and $\mathrm{pr}_2 : \mathbb{R}^2 \to \mathbb{R} : (x, y) \mapsto y$ be the coordinate projection functions. Give an example of a subspace $C \subseteq \mathbb{R}^2$ which is not compact but each of the images $\mathrm{pr}_1(C) \subseteq \mathbb{R}$ and $\mathrm{pr}_2(C) \subseteq \mathbb{R}$ are compact.

Suppose D is a closed subspace of \mathbb{R}^2 and $\operatorname{pr}_1(D) \subseteq \mathbb{R}$ and $\operatorname{pr}_2(D) \subseteq \mathbb{R}$ are compact. What can you conclude about D?

Problem 1.2. Let $\{X_{\alpha}\}_{\alpha \in J}$ be an indexed family of topological spaces. Give the definitions of the *product topology* and the *box topology* on the product $\prod_{\alpha \in J} X_{\alpha}$.

Compare these two topologies on the countable product $\prod_{i=1}^{\infty} \mathbb{R}$ where \mathbb{R} has the standard (euclidean) topology; say (with justification) if one is strictly finer than the other.

Problem 1.3. Define what it means for a topological space to be *connected*. Suppose that \mathbb{R} has the standard (euclidean) topology and that $X = \prod_{i=1}^{\infty} \mathbb{R}$ is given the box topology. Is X connected? Either supply a proof that X is connected or describe an explicit separation of X as necessary.

Problem 1.4. Given a continuous map $f : X \to Y$ between topological spaces, and $x_0 \in X$ a basepoint, define the *induced homomorphism* f_* between the appropriate fundamental groups.

Give an example of a pair of topological spaces X and Y and two continuous maps $f, g: X \to Y$ where f_* is injective and g_* is not injective.

Problem 1.5. Give the definition of a *basis* of a topological space X.

Describe two distinct bases for the standard (euclidean) topology on \mathbb{R}^2 , and say how you would verify that these two bases generate the same topology on \mathbb{R}^2 .

2. Point-set topology

Solve 3 of the following problems. In your answers, please clearly indicate what theorems you are using.

Problem 2.1 (Components). Let $X = \mathbb{R} - \mathbb{Q}$ and C be the (middle thirds) Cantor set. Recall that C can be defined as follows. Let $f : \mathbb{R} \to \mathbb{R} : x \mapsto x/3$ and $g : \mathbb{R} \to \mathbb{R} : x \mapsto x/3 + 2/3$. Set $C_0 = [0,1]$, $C_1 = f(C_0) \cup g(C_0)$ so the open middle third of C_0 is removed. Inductively, define $C_{n+1} = f(C_n) \cup g(C_n)$ for $n \ge 0$. The Cantor set is $C = \bigcap_{n=0}^{\infty} C_n$ with the subspace topology inherited from the standard topology on \mathbb{R} .

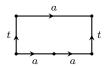
- (a) Give the definition of a *connected component* of a topological space Z.
- (b) Prove that the connected components of the space X above are single-tons.
- (c) Prove that the connected components of the Cantor set C above are singletons.
- (d) Prove that X and C are not homeomorphic.
- **Problem 2.2** (Compactness). (a) Sketch a proof of the fact that a continuous bijection from a compact to a Hausdorff space is a homeomorphism. (State the major results used in your proof).
- (b) Let X be the quotient space of the unit interval [0, 1] by the equivalence relation $x \sim y$ if and only if $x y \in \mathbb{Z}$. Prove that X is homeomorphic to the unit circle $S^1 \subseteq \mathbb{R}^2$.
- **Problem 2.3** (Hausdorff). (a) Prove that a topological space X is Hausdorff if and only if $\{(x, x) \mid x \in X\}$ is closed in $X \times X$ with the product topology.
- (b) Prove that the product topology on $X \times Y$ is Hausdorff if and only if X and Y are Hausdorff.
- **Problem 2.4** (Point-set topology of covering maps). (a) Give the definition of a covering space map $p: E \to B$.
- (b) Prove that a covering space map $p: E \to B$ is an open map. Conclude that p is also a quotient map.
- (c) Is every quotient map $q: X \to Y$ a covering space map? Give a proof or a counterexample.
- **Problem 2.5** (Maps of Cantor sets). (a) Describe how to construct a continuous surjection from the Cantor set C to the unit square $[0, 1] \times [0, 1]$. For your reference, one definition of the Cantor set C is given in the preamble to problem 2.1 above.
- (b) Sketch how to deduce that there exists a continuous surjection $[0,1] \rightarrow [0,1] \times [0,1]$

Solve 3 of the following problems. In your answers, please clearly indicate what theorems you are using.

(The set \mathbb{R} of real numbers is always endowed with the standard topology, \mathbb{R}^n with the product topology, and subsets like $[0,1] \subset \mathbb{R}, S^1, D^2 \subset \mathbb{R}^2$, etc with the subspace topology.)

- **Problem 3.1** (Free groups and graphs). (a) Let X be a connected, finite graph (1-dimensional cell complex). The fundamental group of X is a free group. Write down an expression for the rank of this free group in terms of the number of vertices (0-cells) and the number of edges (1-cells) of X.
- (b) Let F be a free group of rank 2 and let $H \leq F$ be a subgroup of finite index, k. Using the theory of covering spaces, prove that H is a free group and determine its rank.
- (c) Give a sketch of a topological proof of the fact that every subgroup of a free group is free. Just supply the major steps (no detailed arguments needed).

Problem 3.2 (Cell Complexes; Retracts). Consider a cell complex X with 1-skeleton $S_a^1 \vee S_t^1$ (one 0-cell v and two oriented 1-cells labeled a and t) and 2-cell shown.

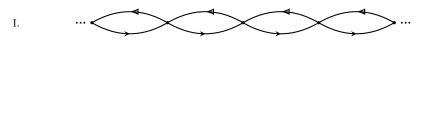


- (a) Write down a presentation for the fundamental group $\pi_1(X, v)$. (No need for any detailed justifications)
- (b) Compute the abelianization of the group $\pi_1(X, v)$ obtained above.
- (c) Is the subspace S_a^1 a retract of X? Justify your answer. (d) Same question as part (c) above for the subspace S_t^1 .

Problem 3.3 (Covering spaces and fundamental groups). Let $X \subseteq \mathbb{R}^3$ be the union of S^2 and one of its diameters.

- (a) Use van Kampen's theorem to compute the fundamental group of X.
- (b) Describe all the connected covering spaces of X. Say why your list is complete.
- **Problem 3.4** (General Lifting Theorem). (a) State the general lifting theorem for continuous maps $f: (Y, y_0) \to (B, b_0)$ into the base space of a covering space $p: (E, e_0) \to (B, b_0)$. Note that this theorem involves topological conditions on the space Y as well as an algebra condition.

- (b) Prove that every continuous map $f : \mathbb{R}P^2 \to T^3$ is null-homotopic. Here $\mathbb{R}P^2$ is the real projective plane and $T^3 = S^1 \times S^1 \times S^1$ is the 3-torus.
- **Problem 3.5** (Deck Transformations). (a) Give the definition of a *deck trans*formation (also called *covering space automorphism*) of the covering space $p : E \to B$, and sketch an argument that deck transformations form a group under composition. This group is denoted by $\operatorname{Aut}(E \xrightarrow{p} B)$.
- (b) Let $B = S^1 \vee S^1$ be the wedge of two circles and $p: E \to B$ be a covering space. Prove that deck transformations must map 0-cells (resp. 1-cells) of E to 0-cells (resp. 1-cells) of E.
- (c) Let $B = S^1 \vee \dot{S}^1$ be the wedge of two circles as above. Determine the group Aut $(E \xrightarrow{p} B)$ for each of the following connected, infinite-sheeted covering spaces. In each diagram the pattern continues infinitely to the right and to the left.



II.