ALGEBRA QUALIFYING EXAM - JANUARY 2023

INSTRUCTIONS

Solve all the problems. Give clear and complete justification of your solutions, unless prompted otherwise for a particular problem.

PROBLEMS

- 1. Let G be a group of order p^2 , where p is prime. Show that G is abelian.
- 2. Show that any group whose order is 385 has a non-trivial center.
- 3. Find the Galois group of $f(x) = x^4 + 5x^2 + 6 \in \mathbb{Q}[x]$; describe the automorphisms. Determine a familiar group that this Galois group is isomorphic to.
- 4. Let F be a field of characteristic 0 and α the solution to an irreducible cubic in F[x]. Show that $F(\alpha^2) = F(\alpha)$.
- 5. For each of the following, either prove the statement or provide a counterexample.
 - (a) Every matrix of finite order in $GL(n, \mathbb{C})$ is diagonalizable over \mathbb{C} .
 - (b) Every matrix of finite order in $GL(n, \mathbb{Q})$ is diagonalizable over \mathbb{Q} .
- 6. Consider a polynomial f(x) with integer coefficients. Assume f(0) and f(1) are odd. Show that f has no integral roots.

Hint: odd is the same as being congruent to 1 mod 2.

- 7. Consider the S_3 be the symmetric group on 3 letters and let R be the group ring $R = \mathbb{Z}[S_3]$.
 - (a) Write down a nonzero element in R which is a zero-divisor.
 - (b) Write down an element in the center of R which is not in $\mathbb{Z} \cdot e$, where e is the identity element of S_3 .
 - (c) Write down an *R*-module which is not a free module.
- 8. Classify up to similarity all linear transformations $T \in \text{End}(\mathbb{C}_6)$ such that $T^6 = 0$ and T has at most two 2-dimensional invariant subspaces.