ALGEBRA QUALIFYING EXAM - JANUARY 2023

Instructions

Solve all the problems. Give clear and complete justification of your solutions, unless prompted otherwise for a particular problem.

Problems

1. Let G be a group of order p^{2}, where p is prime. Show that G is abelian.
2. Show that any group whose order is 385 has a non-trivial center.
3. Find the Galois group of $f(x)=x^{4}+5 x^{2}+6 \in \mathbb{Q}[x]$; describe the automorphisms. Determine a familiar group that this Galois group is isomorphic to.
4. Let F be a field of characteristic 0 and α the solution to an irreducible cubic in $F[x]$. Show that $F\left(\alpha^{2}\right)=F(\alpha)$.
5. For each of the following, either prove the statement or provide a counterexample.
(a) Every matrix of finite order in $\operatorname{GL}(n, \mathbb{C})$ is diagonalizable over \mathbb{C}.
(b) Every matrix of finite order in $\mathrm{GL}(n, \mathbb{Q})$ is diagonalizable over \mathbb{Q}.
6. Consider a polynomial $f(x)$ with integer coefficients. Assume $f(0)$ and $f(1)$ are odd. Show that f has no integral roots.
Hint: odd is the same as being congruent to $1 \bmod 2$.
7. Consider the S_{3} be the symmetric group on 3 letters and let R be the group ring $R=\mathbb{Z}\left[S_{3}\right]$.
(a) Write down a nonzero element in R which is a zero-divisor.
(b) Write down an element in the center of R which is not in $\mathbb{Z} \cdot e$, where e is the identity element of S_{3}.
(c) Write down an R-module which is not a free module.
8. Classify up to similarity all linear transformations $T \in \operatorname{End}\left(\mathbb{C}_{6}\right)$ such that $T^{6}=0$ and T has at most two 2-dimensional invariant subspaces.
