Real Analysis Qualifying Exam – January 2022

NOTATION: \mathbb{R} and \mathbb{N} denote the sets of real and natural numbers, respectively. Unless otherwise specified, the standard metrics/topologies/measures are always assumed for all spaces involved. *m* denotes Lebesgue measure on the real line. As customary, the integral of *f* with respect to Lebesgue measure may be written as $\int f(x)dx$ instead of $\int fdm$. $L^p(X, \mathcal{M}, \mu)$ denotes the space of \mathcal{M} -measurable functions *f* such that $|f|^p$ is μ -integrable, and the norm of *f* in this space is denoted $||f||_p$ (with the necessary modification in the case $p = \infty$).

There are 8 equally-weighted problems in this exam. Answer as many of them as you can.

- (1) Let $f : \mathbb{R} \to \mathbb{R}$ be a measurable function. For $t \in \mathbb{R}$, define $f_t : \mathbb{R} \to \mathbb{R}$ by $f_t(x) = f(t+x)$ for each $x \in \mathbb{R}$. Show that f_t is a measurable function.
- (2) Let $f \in L^1(\mathbb{R})$. Suppose that $\int_a^b f(x)dx = 0$ for all rational numbers a < b. Prove that f is equal to 0 almost everywhere on \mathbb{R} .
- (3) Let *a* and *b* be real numbers satisfying a > b > 1. For each $n \in \mathbb{N}$, let

$$f_n(x) = \frac{n|\cos(x)|}{1+n^a x^b}.$$

Show that $\lim_{n\to\infty}\int_0^\infty f(x)dx$ exists and find its value.

- (4) Give an example of a sequence $(f_n)_{n=1}^{\infty}$ in $L^1(\mathbb{R})$ such that $\lim_{n \to \infty} ||f_n||_1 = 0$, but for each $x \in \mathbb{R}$ we have $\limsup_{n \to \infty} f_n(x) = \infty$.
- (5) Let (X, \mathcal{M}) be a measurable space, and let μ, ν, λ be σ -finite measures on (X, \mathcal{M}) with $\nu \ll \mu \ll \lambda$. Show that we have

$$\frac{dv}{d\lambda} = \frac{dv}{d\mu} \cdot \frac{d\mu}{d\lambda}, \qquad \lambda \text{- almost everywhere on } X.$$

(6) Let $f: (0,1) \to \mathbb{R}$ be Lebesgue integrable. For $x \in (0,1)$ define $g(x) = \int_x^1 \frac{f(t)}{t} dt$. Prove that *g* is Lebesgue integrable on (0,1), and that

$$\int_0^1 g(x)dx = \int_0^1 f(x)dx$$

Hint: Notice that g(x) can also be written as $g(x) = \int_0^1 \frac{f(t)}{t} \chi_{(x,1)}(t) dt$

- (7) Let E ⊂ R be a measurable set of finite measure. Let (f_n)_{n=1}[∞] be a sequence in L²(E) converging in measure to a function f, and suppose that ||f_n||₂ ≤ 1 for each n ∈ N.
 - (a) Prove that $f \in L^2(E)$.
 - (b) Show that $\lim_{n\to\infty}\int_E |f-f_n|dm=0.$
- (8) Let $f : [0,1] \to \mathbb{R}$ be a differentiable function, whose derivative f' is continuous on [0,1]. Given $\varepsilon > 0$, prove that there exists a polynomial p such that

$$\|f-p\|_{\infty}+\|f'-p'\|_{\infty}<\varepsilon.$$