Real Analysis Qualifying Exam – August 2021

NOTATION: \mathbb{R} and \mathbb{N} denote the sets of real and natural numbers, respectively. Unless otherwise specified, the standard metrics/topologies/measures are always assumed for all spaces involved. *m* denotes Lebesgue measure on the real line. As customary, the integral of *f* with respect to Lebesgue measure may be written as $\int f(x)dx$ instead of $\int fdm$. $L^p(X, \mathcal{M}, \mu)$ denotes the space of \mathcal{M} -measurable functions *f* such that $|f|^p$ is μ -integrable, and the norm of *f* in this space is denoted $||f||_p$ (with the necessary modification in the case $p = \infty$).

There are 8 equally-weighted problems in this exam. Answer as many of them as you can.

- (1) Let A be the set of real numbers in [0, 1] whose decimal expansions contain no threes. Prove that A is Lebesgue measurable, and find its measure. Some real numbers have non-unique decimal expansions, why does this not cause an issue?
- (2) Let $A \subseteq \mathbb{R}$ be a Lebesgue measurable set. Suppose that for any $a, b \in \mathbb{R}$ with a < b we have

$$m(A\cap(a,b))\leq \frac{b-a}{2}.$$

Prove that m(A) = 0.

(3) For each $n \in \mathbb{N}$, let

$$f_n(x) = \frac{(1-x)^n \cos\left(\frac{n}{x}\right)}{\sqrt{x}}.$$

Show that $\lim_{n\to\infty} \int_0^1 f(x) dx$ exists and find its value.

- (4) Let (X, \mathscr{A}, μ) be a finite measure space. Suppose $A_n \in \mathscr{A}$ for each *n*, and the indicator functions χ_{A_n} converge in $L^1(X, \mathscr{A}, \mu)$ to a function *f*. Prove that there exists $A \in \mathscr{A}$ such that *f* and χ_A are equal μ -a.e. on *X*.
- (5) Let (X, \mathcal{M}) be a measurable space, and let μ, ν be σ -finite measures on (X, \mathcal{M}) with $\nu \ll \mu$. Show that there exists a function $f \in L^1(X, \mathcal{M}, \mu)$ such that for every $g \in L^1(X, \mathcal{M}, \nu)$ and every $E \in \mathcal{M}$ we have

$$\int_E g d\nu = \int_E g f d\mu$$

(6) Justifying all steps, evaluate

$$\int_1^0 \int_y^1 x^{-3/2} \cos\left(\frac{\pi y}{2x}\right) dx dy$$

(7) Let $1 and <math>f \in L^p[0,\infty)$.

- (a) Show that for x > 0, we have $\left| \int_0^x f(t) dt \right| \le ||f||_p x^{1-\frac{1}{p}}$.
- (b) Show that

$$\lim_{x\to\infty}\frac{1}{x^{1-\frac{1}{p}}}\int_0^x f(t)dt=0.$$

Hint: Consider first the case where f has bounded support.

(8) Let \mathscr{F} be the set of all real-valued functions defined on [0,1] which are of the form

$$f(x) = \sum_{n=1}^{\infty} c_n \cos(nx)$$

where the c_n are real numbers satisfying $|c_n| \le 1/n^3$ for all $n \in \mathbb{N}$. Prove that any sequence of functions in \mathscr{F} has a subsequence that converges uniformly on [0, 1].