Real Analysis Qualifying Exam - August 2021

NOTATION: \mathbb{R} and \mathbb{N} denote the sets of real and natural numbers, respectively. Unless otherwise specified, the standard metrics/topologies/measures are always assumed for all spaces involved. m denotes Lebesgue measure on the real line. As customary, the integral of f with respect to Lebesgue measure may be written as $\int f(x) d x$ instead of $\int f d m . L^{p}(X, \mathscr{M}, \mu)$ denotes the space of \mathscr{M}-measurable functions f such that $|f|^{p}$ is μ-integrable, and the norm of f in this space is denoted $\|f\|_{p}$ (with the necessary modification in the case $p=\infty$).

There are 8 equally-weighted problems in this exam. Answer as many of them as you can.
(1) Let A be the set of real numbers in $[0,1]$ whose decimal expansions contain no threes. Prove that A is Lebesgue measurable, and find its measure. Some real numbers have non-unique decimal expansions, why does this not cause an issue?
(2) Let $A \subseteq \mathbb{R}$ be a Lebesgue measurable set. Suppose that for any $a, b \in \mathbb{R}$ with $a<b$ we have

$$
m(A \cap(a, b)) \leq \frac{b-a}{2}
$$

Prove that $m(A)=0$.
(3) For each $n \in \mathbb{N}$, let

$$
f_{n}(x)=\frac{(1-x)^{n} \cos \left(\frac{n}{x}\right)}{\sqrt{x}} .
$$

Show that $\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) d x$ exists and find its value.
(4) Let (X, \mathscr{A}, μ) be a finite measure space. Suppose $A_{n} \in \mathscr{A}$ for each n, and the indicator functions $\chi_{A_{n}}$ converge in $L^{1}(X, \mathscr{A}, \mu)$ to a function f. Prove that there exists $A \in \mathscr{A}$ such that f and χ_{A} are equal μ-a.e. on X.
(5) Let (X, \mathscr{M}) be a measurable space, and let μ, v be σ-finite measures on (X, \mathscr{M}) with $v \ll \mu$. Show that there exists a function $f \in L^{1}(X, \mathscr{M}, \mu)$ such that for every $g \in L^{1}(X, \mathscr{M}, v)$ and every $E \in \mathscr{M}$ we have

$$
\int_{E} g d \nu=\int_{E} g f d \mu
$$

(6) Justifying all steps, evaluate

$$
\int_{1}^{0} \int_{y}^{1} x^{-3 / 2} \cos \left(\frac{\pi y}{2 x}\right) d x d y
$$

(7) Let $1<p<\infty$ and $f \in L^{p}[0, \infty)$.
(a) Show that for $x>0$, we have $\left|\int_{0}^{x} f(t) d t\right| \leq\|f\|_{p} x^{1-\frac{1}{p}}$.
(b) Show that

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{1-\frac{1}{p}}} \int_{0}^{x} f(t) d t=0
$$

Hint: Consider first the case where f has bounded support.
(8) Let \mathscr{F} be the set of all real-valued functions defined on $[0,1]$ which are of the form

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \cos (n x)
$$

where the c_{n} are real numbers satisfying $\left|c_{n}\right| \leq 1 / n^{3}$ for all $n \in \mathbb{N}$. Prove that any sequence of functions in \mathscr{F} has a subsequence that converges uniformly on $[0,1]$.

