Algebra Qualifying Exam - August 2021

Instructions

- Do 3 out of the 4 problems in Part I and 3 out of the 4 problems in Part II.
- Give full and clear justification of your solutions.
- Throughout, p denotes a prime number and \mathbb{F}_{p} denotes a field with p elements.
- For a ring $R, Z(R)$ denotes the center of R and $M_{n}(R)$ denotes the ring of $n \times n$ matrices over R. If R is commutative, $\operatorname{GL}_{n}(R)=M_{n}(R)^{\times}$.

Part I

1. Fix a prime p. Consider the \mathbb{F}_{p}-vector space $V=\mathbb{F}_{p}^{2}=\left\{\binom{x}{y}: x, y \in \mathbb{F}_{p}\right\}$ and subspace $W=\left\{\binom{x}{0}: x \in \mathbb{F}_{p}\right\}$. Let $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ act on V in the usual way by matrix multiplication. Put

$$
G=\left\{g \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right): g w \in W \text { for all } w \in W\right\} .
$$

(a) Show G is a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.
(b) Determine the order of G.
(c) For which p is G abelian?
2. Determine all pairs of prime numbers (p, q) which satisfy the following: every group G of order $p q$ with a normal subgroup of order p is abelian.
3. Describe (with proof), as explicitly as you can, both the set of prime ideals and the set of maximal ideals for each of the following rings:
(a) $\mathbb{Z} / 6 \mathbb{Z}$
(b) $\mathbb{Q}[x]$
(c) $\mathbb{Z}[x] /\left(x^{2}-x-1\right)$
4. Let R be a ring, and M be a (left) R-module. Recall M is simple (or irreducible) if $M \neq 0$ and the only nonzero submodule of M is M itself.
(a) Prove that M is cyclic if M is simple.
(b) Take $R=\mathbb{Z} \times \mathbb{Z}$. Exhibit a nonzero cyclic R-module which is not simple.
(c) Again with $R=\mathbb{Z} \times \mathbb{Z}$, classify, as explicitly as you can, all simple R-modules up to isomorphism.

Part II

5. Let $f(x)=x^{4}+3 \in \mathbb{Q}[x]$.
(a) Determine a splitting field K of $f(x)$, and give its degree over \mathbb{Q}.
(b) Determine all subfields of K / \mathbb{Q}, and give their degrees over \mathbb{Q}.
(c) Determine the structure of $\operatorname{Gal}(K / \mathbb{Q})$ (as an abstract group you know).
6. Let F be a field. Let Σ be the set of irreducible polynomials $f(x) \in F[x]$ such that a splitting field K of $f(x)$ has degree 6 over F. Determine $\{\operatorname{deg} f(x): f(x) \in \Sigma\}$ in the following two cases:
(a) $F=\mathbb{Q}$;
(b) F is a finite field.
7. (a) Show that every quadratic field extension F / \mathbb{Q} embeds as a subring of $M_{2}(\mathbb{Q})$.
(b) Fix two quadratic fields F and K, as well as an embedding $i: F \hookrightarrow M_{2}(\mathbb{Q})$. Determine the set of embeddings $j: K \hookrightarrow M_{2}(\mathbb{Q})$ such that $i(x)$ and $j(y)$ commute for every $x \in F, y \in K$.
8. (a) Compute a complete set of representatives of the equivalence classes of quadratic forms on the 3 -dimensional vector space $V=\mathbb{F}_{5}^{3}$ over \mathbb{F}_{5}.
(b) Which of these forms are isotropic?
(c) Which of these forms are universal?
