Qualifying exam Analysis January 2021

1. (3+3 points) Find the σ-algebras $\mathcal{M}_{j}=\sigma\left(\mathcal{C}_{j}\right)$ on \mathbb{R} that are generated by the following collections of sets:

$$
\mathcal{C}_{1}=\{\{x\}: x \in \mathbb{R}\}, \quad \mathcal{C}_{2}=\{(n, n+x): n \in \mathbb{Z}, x>0\}
$$

2. $\left(\mathbf{1}+\mathbf{4}+\mathbf{1}\right.$ points) Let (X, \mathcal{M}, μ) be a measure space, and let $f_{n}: X \rightarrow$ $[0, \infty]$ be a sequence of measurable functions.
(a) State the monotone convergence theorem (in this setting).
(b) Now suppose also that $f(x):=\lim f_{n}(x) \in[0, \infty]$ exists for almost every $x \in X$, and $f_{n}(x) \leq f(x)$ almost everywhere for all $n \geq 1$. Show that then

$$
\int_{X} f(x) d \mu(x)=\lim _{n \rightarrow \infty} \int_{X} f_{n}(x) d \mu(x) .
$$

Suggestion: Use Fatou's lemma.
(c) Can you also use dominated convergence to prove the result from part (b)?
3. (5 points) Let μ, ν be finite measures on a common space (X, \mathcal{M}). Show that there is a measurable function $f: X \rightarrow[0,1]$ such that

$$
\int_{A}(1-f) d \mu=\int_{A} f d \nu
$$

for all $A \in \mathcal{M}$. Suggestion: Use the Radon-Nikodym theorem.
4. $\left(2+2+2+2\right.$ points) Consider the sequence of functions $f_{n} \in L^{1}(\mathbb{R})$, $f_{n}(x)=\chi_{(n, 2 n)}(x)$. Does f_{n} converge:
(a) pointwise almost everywhere (with respect to Lebesgue measure);
(b) in L^{1};
(c) in measure;
(d) in $\mathcal{D}^{\prime}(\mathbb{R})$?

In those cases where the sequence does converge, please also identify the limit.
5. (6 points) Evaluate

$$
\int_{0}^{1} d x \int_{0}^{\sqrt{\pi}} d y y^{3} \cos \left(x y^{2}\right)
$$

You will probably want to use Fubini-Tonelli here. Please justify this carefully; don't just do the formal calculation.
6. $\left(\mathbf{1}+\mathbf{2}+\mathbf{3}\right.$ points) Find all $p, 1 \leq p \leq \infty$, for which $f \in L^{p}(\mathbb{R})$, for the following functions:

$$
\begin{gathered}
\text { (a) } f(x)=1 ; \quad \text { (b) } f(x)=x e^{-|x|} ; \\
\text { (c) } f(x)=\sum_{n=4}^{\infty} n^{-1 / 2}(x-n)^{-1 / n} \chi_{(n, n+1)}(x)
\end{gathered}
$$

7. (4 points) Let $f:(0,1) \rightarrow(0, \infty)$ be a measurable function. Prove that

$$
\int_{0}^{1} f(x) d x \int_{0}^{1} \frac{1}{f(x)} d x \geq 1
$$

Suggestion: Try to apply Hölder's inequality.
8. ($4+2$ points) (a) Let $u \in \mathcal{S}^{\prime}(\mathbb{R})$ be a tempered distribution with $\left(d^{N} / d x^{N}\right) u=0$ for some $N \geq 0$. Show that then the Fourier transform $\widehat{u} \in \mathcal{S}^{\prime}(\mathbb{R})$ satisfies $(\widehat{u}, \varphi)=0$ for all $\varphi \in C_{0}^{\infty}(\mathbb{R})$ with $0 \notin \operatorname{supp} \varphi$.
(b) Find $\widehat{u} \in \mathcal{S}^{\prime}(\mathbb{R})$ for $u(x)=x$ (that is, $u \in \mathcal{S}^{\prime}(\mathbb{R})$ is the distribution $u=u_{f}$ that is generated by the function $\left.f(x)=x\right)$.

