- Please try to explain your work clearly and write neatly.
- Attempt at least one question from each section. Within this constraint, full credit for complete answers to 6 questions.
- All questions carry equal weight and points are split evenly between the parts of a question. For example, # 2 has two parts, so each is worth 50% of the points.
- By convention, all rings have a 1. For R a ring, R^{\times} denotes the group of units of R.
- Good luck!

Section 1 – Groups.

- 1. For each statement, provide a proof if true, a counterexample if false.
 - a. Every group of order 12 is abelian.
 - b. Every infinite group contains an element of infinite order.
 - c. If a simple group G acts non-trivially on a set with 4 elements then G is cyclic.
- 2. Let G be a finite group and p be a prime.
 - a. Show that G cannot have exactly 2 Sylow p-subgroups. Give an example of a group that has exactly 3 Sylow 2-subgroups.
 - b. Let N be a normal subgroup of G and suppose that S is a normal Sylow p-subgroup of N. Prove that S is normal in G.

Section 2 – Rings.

- 3. Let R be a ring in which $r^2 = r$ for all $r \in R$.
 - a. Prove that r = -r for all $r \in R$.
 - b. Prove that R is commutative.
 - c. Let \mathfrak{p} be a prime ideal in R. (By definition, $\mathfrak{p} \neq R$.) Show that $R/\mathfrak{p} \simeq \mathbb{F}_2$, the field with 2 elements.
- 4. a. Show that the polynomial ring $\mathbb{Z}[X]$ is not a PID (principal ideal domain).

b. Consider the ring C[0, 1] of continuous functions $f : [0, 1] \to \mathbb{R}$ under pointwise addition and multiplication. Show that C[0, 1] is not Noetherian.

Section 3 – Fields.

- 5. a. Let K/F be a field extension with [K : F] odd. Show that $F(\alpha) = F(\alpha^2)$ for all $\alpha \in K$.
 - b. Is $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ a Galois extension? Justify your answer.
- 6. Consider the finite field \mathbb{F}_{2^6} with 2^6 elements.
 - a. Describe the structure of the group $\operatorname{Aut}(\mathbb{F}_{2^6})$ of field automorphisms of \mathbb{F}_{2^6} .
 - b. Describe the lattice of subfields of \mathbb{F}_{2^6} . That is, list the subfields of \mathbb{F}_{2^6} and the containments between them—even better, draw a picture!
 - c. How many elements $\alpha \in \mathbb{F}_{2^6}$ satisfy $\mathbb{F}_2(\alpha) = \mathbb{F}_{2^6}$? (Hint: α has the given property if and only if α is not contained in a maximal subfield of \mathbb{F}_{2^6} .)

Section 4 – Rings and Modules.

- 7. a. State a version of the Chinese Remainder Theorem.
 - b. Consider the ring $R = \mathbb{Q}[X] / (X^2 1)$. Describe the maximal ideals in R.
 - c. With R as in part b, write R_{tor}^{\times} for the torsion subgroup of R^{\times} (made up of the elements of finite order in R^{\times}). Determine the group R_{tor}^{\times} .
- 8. a. Prove that the additive group \mathbb{Q} of rational numbers is not a free \mathbb{Z} -module.
 - b. Let $M_3(F)$ denote the ring of 3×3 matrices with entries in a field F. Suppose $A \in M_3(F)$ satisfies $A^3 = 0$ but $A^2 \neq 0$. Write $\mathcal{C}(A)$ for the centralizer of A, that is,

$$\mathcal{C}(A) = \{ B \in \mathcal{M}_3(F) : AB = BA \}$$

Determine the dimension of $\mathcal{C}(A)$ as an *F*-vector space.