Qualifying exam Analysis August 2020

1. (3+6+3 points) (a) Let \mathcal{A}_0 be the collection of sets $A \subseteq [c, d)$ that are finite disjoint unions of intervals of the form I = [a, b), with $c \leq a \leq b \leq d$. Show that \mathcal{A}_0 is an algebra on X = [c, d). (A somewhat informal argument, perhaps supported by a sketch, would be fine here.)

(b) Let μ, ν be measures on the Borel σ -algebra \mathcal{B} of $X = \mathbb{R}$. Suppose that: (i) $\mu((a, b)) = \nu((a, b))$ and (ii) $\mu((a, b)), \nu((a, b)) < \infty$ for all $a, b \in \mathbb{R}, a < b$. Show that then $\mu(B) = \nu(B)$ for all $B \in \mathcal{B}$. Suggestion: Use the monotone class theorem (= Theorem 2.10 in Bass's book).

(c) Show that the conclusion of part (b) can fail if assumption (ii) is dropped.

- 2. (4 points) Let $\mathcal{M} = \{(a, a+1) : a \in \mathbb{R}\}$. Show that \mathcal{M} generates the Borel σ -algebra on \mathbb{R} .
- 3. (4 points) Let $f \in L^1(\mathbb{R})$. Show that then

$$g(x) = \int_{-\infty}^{\infty} f(t) \cos(xt^2) \, dt$$

is a continuous function on \mathbb{R} .

4. (4 points) Let $\nu = m_{\alpha}$ be the Borel measure on \mathbb{R} that is generated by the increasing function

$$\alpha(x) = \begin{cases} x & x < 0\\ x+1 & x \ge 0 \end{cases},$$

and let μ be the Lebesgue measure. Find the Lebesgue decomposition of ν with respect to μ , that is, find measures λ, ρ such that $\nu = \lambda + \rho$, $\lambda \perp \mu, \rho \ll \mu$.

5. (2+3+2+3 points) Consider the sequence of functions f_n ∈ L¹(ℝ), f_n(x) = nχ_(0,1/n)(x). Does f_n converge:
(a) pointwise almost everywhere (with respect to Lebesgue measure);
(b) in L¹;

- (c) in measure;
- (d) in $\mathcal{D}'(\mathbb{R})$?

In those cases where the sequence does converge, please also identify the limit.

6. (6 points) Evaluate

$$\int_0^\infty dx \, \int_1^\infty dy \, e^{(i-1)xy^2}.$$

You will probably want to use Fubini-Tonelli here. Please justify this carefully; don't just do the formal calculation.

- 7. (3+4 points) Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ such that $f \in L^p(\mathbb{R})$ if and only if: (a) $1 ; (b) <math>p \ge 2$
- 8. (4 points) Let $f : (0,1) \to \mathbb{C}$ be a measurable function. Show that $M : [1,\infty) \to [0,\infty],$

$$M(p) = \left(\int_0^1 |f(x)|^p \, dx\right)^{1/p},$$

is an increasing function of p.

9. (5 points) Let $u \in \mathcal{D}'(\mathbb{R})$ and $f \in C^{\infty}(\mathbb{R})$. Prove the product rule for the distributional derivative:

$$(fu)' = f'u + fu'$$