Qualifying exam Analysis August 2020

1. (3+6+3 points) (a) Let \mathcal{A}_{0} be the collection of sets $A \subseteq[c, d)$ that are finite disjoint unions of intervals of the form $I=[a, b)$, with $c \leq$ $a \leq b \leq d$. Show that \mathcal{A}_{0} is an algebra on $X=[c, d)$. (A somewhat informal argument, perhaps supported by a sketch, would be fine here.)
(b) Let μ, ν be measures on the Borel σ-algebra \mathcal{B} of $X=\mathbb{R}$. Suppose that: (i) $\mu((a, b))=\nu((a, b))$ and (ii) $\mu((a, b)), \nu((a, b))<\infty$ for all $a, b \in \mathbb{R}, a<b$. Show that then $\mu(B)=\nu(B)$ for all $B \in \mathcal{B}$. Suggestion: Use the monotone class theorem (= Theorem 2.10 in Bass's book).
(c) Show that the conclusion of part (b) can fail if assumption (ii) is dropped.
2. (4 points) Let $\mathcal{M}=\{(a, a+1): a \in \mathbb{R}\}$. Show that \mathcal{M} generates the Borel σ-algebra on \mathbb{R}.
3. (4 points) Let $f \in L^{1}(\mathbb{R})$. Show that then

$$
g(x)=\int_{-\infty}^{\infty} f(t) \cos \left(x t^{2}\right) d t
$$

is a continuous function on \mathbb{R}.
4. (4 points) Let $\nu=m_{\alpha}$ be the Borel measure on \mathbb{R} that is generated by the increasing function

$$
\alpha(x)=\left\{\begin{array}{ll}
x & x<0 \\
x+1 & x \geq 0
\end{array},\right.
$$

and let μ be the Lebesgue measure. Find the Lebesgue decomposition of ν with respect to μ, that is, find measures λ, ρ such that $\nu=\lambda+\rho$, $\lambda \perp \mu, \rho \ll \mu$.
5. $\left(2+3+2+3\right.$ points) Consider the sequence of functions $f_{n} \in L^{1}(\mathbb{R})$, $f_{n}(x)=n \chi_{(0,1 / n)}(x)$. Does f_{n} converge:
(a) pointwise almost everywhere (with respect to Lebesgue measure);
(b) in L^{1};
(c) in measure;
(d) in $\mathcal{D}^{\prime}(\mathbb{R})$?

In those cases where the sequence does converge, please also identify the limit.
6. (6 points) Evaluate

$$
\int_{0}^{\infty} d x \int_{1}^{\infty} d y e^{(i-1) x y^{2}}
$$

You will probably want to use Fubini-Tonelli here. Please justify this carefully; don't just do the formal calculation.
7. (3+4 points) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \in L^{p}(\mathbb{R})$ if and only if: (a) $1<p<2$; (b) $p \geq 2$
8. (4 points) Let $f:(0,1) \rightarrow \mathbb{C}$ be a measurable function. Show that $M:[1, \infty) \rightarrow[0, \infty]$,

$$
M(p)=\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{1 / p}
$$

is an increasing function of p.
9. (5 points) Let $u \in \mathcal{D}^{\prime}(\mathbb{R})$ and $f \in C^{\infty}(\mathbb{R})$. Prove the product rule for the distributional derivative:

$$
(f u)^{\prime}=f^{\prime} u+f u^{\prime}
$$

