- Please try to explain your work clearly and write neatly.
- Full credit for complete answers to any n questions where n is the unique positive integer such that the symmetric group S_n admits an outer automorphism.¹ If you do more than n questions, we'll take your best n.
- By convention, all rings and subrings have (multiplicative) identity elements. For S a ring, S[×] denotes the group of units (or unit group) of S. For q a prime power, we write F_q for the field with q elements.
- Good luck!
- 1. For each statement, provide a proof if true, a counterexample if false.
 - a. Every group of order 35 is cyclic.
 - b. Every group of order 180 is solvable.
 - c. If there is a non-trivial homomorphism from \mathbb{Q} , the additive group of rational numbers, to a group A then A is infinite.
- 2. Let p > 2 be a prime and set

$$A = \{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} : a, b \in \mathbb{F}_p, a \neq 0 \}.$$

Then A is a subgroup of $\operatorname{GL}_2(\mathbb{F}_p)$, the multiplicative group of invertible 2×2 matrices with entries in \mathbb{F}_p .

- a. Prove that A has a unique Sylow p-subgroup.
- b. Let l be a prime divisor of p-1. How many Sylow l-subgroups does A have?
- c. Show that A is not nilpotent.
- 3. a. Explain why the subring $\mathbb{Z}[\sqrt{2}, e, \pi]$ of \mathbb{R} generated by $\sqrt{2}$, e and π is Noetherian.
 - b. Let \mathcal{R} be a subring of \mathbb{R} such that the polynomial ring $\mathcal{R}[X]$ is Noetherian. Show that \mathcal{R} is Noetherian.
- 4. Let R be a commutative ring and write \mathfrak{n} for the set of nilpotent elements in R. (Recall that $r \in R$ is *nilpotent* if $r^n = 0$ for some positive integer n.)
 - a. Show that \mathfrak{n} is an ideal in R.

¹By work of Hölder, n = 6.

- b. Prove that $1 + \mathfrak{n} \subset R^{\times}$ where $1 + \mathfrak{n} = \{1 + x : x \in \mathfrak{n}\}$. (Hint: consider the identity $1 X^n = (1 X)(1 + X + \dots + X^{n-1})$ in $\mathbb{Z}[X]$.)
- c. Show that the quotient map $x \mapsto x + \mathfrak{n} : R \to R/\mathfrak{n}$ induces an isomorphism of groups $R^{\times}/1 + \mathfrak{n} \simeq (R/\mathfrak{n})^{\times}$.
- 5. Let p and l be primes. Assume that l divides p-1 and that $X^l a \in \mathbb{F}_p[X]$ has no root in \mathbb{F}_p . Prove that $X^l - a$ is irreducible over \mathbb{F}_p .
- 6. Let K/F be a Galois extension of fields with $\operatorname{Gal}(K/F) \simeq A_4$, the alternating group on a set with four elements.
 - a. Show that there is no quadratic intermediate field. That is, there is no field K' with $F \subset K' \subset K$ and [K':F] = 2.
 - b. Show that there is a unique field K' with $F \subsetneq K' \subsetneq K$ and K'/F Galois.
- 7. Consider the ring $R = \mathbb{Q}[X] / (X^4 1)$.
 - a. How many maximal ideals does R have?
 - b. Write $_4R^{\times}$ for the subgroup of R^{\times} consisting of elements $r \in R$ such that $r^4 = 1$. Express $_4R^{\times}$ as a product of cyclic groups.
- 8. a. Let R be a commutative ring and let I and J be ideals in R such that R/I and R/J are isomorphic as R-modules. Prove that I = J.
 - b. Let $M_2(\mathbb{F}_q)$ denote the ring of 2×2 matrices with entries in the finite field \mathbb{F}_q (with q elements). Determine the number the elements $A \in M_2(\mathbb{F}_q)$ such that $A^2 = 0$. Your answer should be a simple expression in terms of q.