Algebra Qualifying Exam - August 2020

- Please try to explain your work clearly and write neatly.
- Full credit for complete answers to any n questions where n is the unique positive integer such that the symmetric group S_{n} admits an outer automorphism. ${ }^{1}$ If you do more than n questions, we'll take your best n.
- By convention, all rings and subrings have (multiplicative) identity elements. For S a ring, S^{\times}denotes the group of units (or unit group) of S. For q a prime power, we write \mathbb{F}_{q} for the field with q elements.
- Good luck!

1. For each statement, provide a proof if true, a counterexample if false.
a. Every group of order 35 is cyclic.
b. Every group of order 180 is solvable.
c. If there is a non-trivial homomorphism from \mathbb{Q}, the additive group of rational numbers, to a group A then A is infinite.
2. Let $p>2$ be a prime and set

$$
A=\left\{\left[\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right]: a, b \in \mathbb{F}_{p}, a \neq 0\right\} .
$$

Then A is a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$, the multiplicative group of invertible 2×2 matrices with entries in \mathbb{F}_{p}.
a. Prove that A has a unique Sylow p-subgroup.
b. Let l be a prime divisor of $p-1$. How many Sylow l-subgroups does A have?
c. Show that A is not nilpotent.
3. a. Explain why the subring $\mathbb{Z}[\sqrt{2}, e, \pi]$ of \mathbb{R} generated by $\sqrt{2}, e$ and π is Noetherian.
b. Let \mathcal{R} be a subring of \mathbb{R} such that the polynomial ring $\mathcal{R}[\mathrm{X}]$ is Noetherian. Show that \mathcal{R} is Noetherian.
4. Let R be a commutative ring and write \mathfrak{n} for the set of nilpotent elements in R. (Recall that $r \in R$ is nilpotent if $r^{n}=0$ for some positive integer n.)
a. Show that \mathfrak{n} is an ideal in R.

[^0]b. Prove that $1+\mathfrak{n} \subset R^{\times}$where $1+\mathfrak{n}=\{1+x: x \in \mathfrak{n}\}$. (Hint: consider the identity $1-\mathrm{X}^{n}=(1-\mathrm{X})\left(1+\mathrm{X}+\cdots+\mathrm{X}^{n-1}\right)$ in $\left.\mathbb{Z}[\mathrm{X}].\right)$
c. Show that the quotient map $x \mapsto x+\mathfrak{n}: R \rightarrow R / \mathfrak{n}$ induces an isomorphism of groups $R^{\times} / 1+\mathfrak{n} \simeq(R / \mathfrak{n})^{\times}$.
5. Let p and l be primes. Assume that l divides $p-1$ and that $\mathrm{X}^{l}-a \in \mathbb{F}_{p}[\mathrm{X}]$ has no root in \mathbb{F}_{p}. Prove that $\mathrm{X}^{l}-a$ is irreducible over \mathbb{F}_{p}.
6. Let K / F be a Galois extension of fields with $\operatorname{Gal}(K / F) \simeq A_{4}$, the alternating group on a set with four elements.
a. Show that there is no quadratic intermediate field. That is, there is no field K^{\prime} with $F \subset K^{\prime} \subset K$ and $\left[K^{\prime}: F\right]=2$.
b. Show that there is a unique field K^{\prime} with $F \subsetneq K^{\prime} \subsetneq K$ and K^{\prime} / F Galois.
7. Consider the ring $R=\mathbb{Q}[\mathrm{X}] /\left(\mathrm{X}^{4}-1\right)$.
a. How many maximal ideals does R have?
b. Write ${ }_{4} R^{\times}$for the subgroup of R^{\times}consisting of elements $r \in R$ such that $r^{4}=1$. Express ${ }_{4} R^{\times}$as a product of cyclic groups.
8. a. Let R be a commutative ring and let I and J be ideals in R such that R / I and R / J are isomorphic as R-modules. Prove that $I=J$.
b. Let $\mathrm{M}_{2}\left(\mathbb{F}_{q}\right)$ denote the ring of 2×2 matrices with entries in the finite field \mathbb{F}_{q} (with q elements). Determine the number the elements $A \in \mathrm{M}_{2}\left(\mathbb{F}_{q}\right)$ such that $A^{2}=0$. Your answer should be a simple expression in terms of q.

[^0]: ${ }^{1}$ By work of Hölder, $n=6$.

