Be sure that this examination has 2 pages.

The University of Oklahoma Qualifying Examination Examinations - August 14, 2019

Real Analysis

Dr.~M.~Zhu

Close book examination

Time: 180 minutes

Choose 7 out of the following 8 questions

Marks

- [20] 1. Prove: Any open subset O in R can be written uniquely as a countable union of disjoint open intervals.
- [20] 2. State and prove Egorov Theorem concerning a sequence of measurable functions.
- [20] **3.** (1). State and prove the Fator Lemma. (2). Find a sequence of nonnegative functions $\{f_n\}$ such that $\lim_{n\to\infty} f_n(x) = f(x)$ a.e, and

$$\int f < \liminf_{n \to \infty} \int f_n.$$

[20] 4. Assume that f(x) is continuous in $[0, \infty)$ and $\lim_{x\to\infty} f(x) = A$. Prove that for any L > 0

$$\lim_{n \to \infty} \int_0^L f(nx) dx = LA.$$

[20] 5. Suppose f is integrable on \mathbb{R}^n . For any $\epsilon > 0$, prove (1) There is a ball B, such that

$$\int_{B^c} |f| < \epsilon.$$

(2) There is a $\delta = \delta(\epsilon) > 0$ such that

$$\int_E |f| < \epsilon, \quad whenever \quad m(E) < \delta.$$

[20] 6. Assume that f(x), g(x) > 0 on a measurable set $E \subset R$. Assume that $p \in (0, 1)$ and q = p/(p-1) < 0. Prove that

$$\int_E fgdx \ge (\int_E f^p dx)^{1/p} \cdot (\int_E g^q dx)^{1/q}$$

Continued on page 2

August 14, 2019

- [20] 7. Prove that $L^p(E)$ (for $p \ge 1$) is complete.
- [20] 8. Let $\{e_i\}_{i=1}^{\infty}$ be an orthonormal basis for $L^2[0,1]$. Show that $e_i \rightarrow 0$. Could e_i strongly converge to a function $f \in L^2[0,1]$ (that is: $||e_i f||_{L^2[0,1]} \rightarrow 0$)?

[160] Total Marks