Qualifying Exam in Topology, Spring 2019

1. Definitions and Theorems

Define the following terms/state the following theorems. Definitions/Theorems must be stated in full. *In addition, provide briefly an example for each of the definitions* (1 - 3).

- 1. Hausdorff
- 2. Complete metric space
- 3. Covering map $p: X \to Y$
- 4. Urysohn Metrization Theorem
- 5. $\pi_1(X, x)$, i.e. the fundamental group of a topological space *X* with basepoint *x*. (The definition should include the definition of the group operation. Just state definitions, no verification of well-definedness required.)

2. Point Set Topology (Mostly)

Solve 4 of the following problems. In your answers, indicate what theorems that you are using.

(1) Suppose *X* is compact and *Y* is Hausdorff. Show that if $f : X \to Y$ is a surjective continuous map, then *f* is a quotient map.

(2) For each of the following, prove it's true or prove it's false with a counterexample.

- (a) If B(x, r) is an open ball of radius r > 0 with center x in a metric space X, then its closure $\overline{B(x, r)}$ is $\{y \in X \mid d(x, y) \le r\}$.
- (b) There is a continuous surjective map $f : [-1, 1] \rightarrow [-1, 1]^9$.
- (c) If $A \subseteq X$ is connected, then the closure \overline{A} is connected.

(3) (a) State the Baire Category Theorem.

(b) Prove that a complete metric space with no isolated points is uncountable.

(4) Let *X* be a Hausdorff space. Prove from the definitions that if $Y \subset X$ is compact and $x \in X \setminus Y$, then there are open sets *U* containing *x* and *V* containing *Y* such that $U \cap V = \emptyset$.

(5) Let $X = \prod_{i \in \mathbb{N}} X_i$ where $X_i = S^3$. Give X the product topology. Show that X is metrizable.

3. Fundamental Group and Covering Spaces (Mostly)

Solve 4 of the following problems. In your answers, indicate what theorems you are using.

(1) Let (X,A) be a pair of topological spaces.

- (a) State the homotopy extension property (HEP) for a pair (*X*,*A*) of spaces.
- (b) Prove the HEP is equivalent to the existence of a retraction $r : X \times I \rightarrow (A \times I) \cup (X \times 0)$.

(2) Prove the Brouwer Fixed Point Theorem (in dimension 2).

(3) Let *X* be a path-connected, locally path-connected, semilocally simply-connected space. Let $p: \tilde{X} \to X$ be the universal covering space of *X*, and let $A \subseteq X$ be a path-connected, locally path-connected, semilocally simply-connected subspace. Let \tilde{A} be a path-component of $p^{-1}(A)$. Prove that the following are equivalent.

- (a) The restriction $p|_{\tilde{A}} : \tilde{A} \to A$ is the universal cover of *A*.
- (b) The map $\pi_1(A, a) \rightarrow \pi_1(X, a)$ induced by inclusion is injective.

(4) Let $T^2 = S^1 \times S^1$ be the 2-torus. Show that the set of isomorphism classes of covering maps $T^2 \rightarrow T^2$ is countably infinite. (In other words, there are countably many covering maps $T^2 \rightarrow T^2$ which are distinct even up to isomorphism of covering maps.)

(5) Let *D* be the closed unit disc $\{z \in \mathbb{C} \mid |z|^2 \le 1\} \subset \mathbb{C}$ and let $T^2 = S^1 \times S^1$. Let *X* be the topological space obtained by gluing ∂D to one factor of T^2 by a 5-fold covering map. More formally, $X = D \sqcup T^2 / \sim$ where the equivalence relation \sim is generated by: $e^t \in \partial D$ is equivalent to $(e^{5t}, 0) \in T^2$. (Otherwise, points are not equivalent.) Compute $\pi_1(X, x)$.