Algebra Qualifying Exam January 7, 2019

Name:

- i) a) Write $\sigma = (456)(23)(12)(678)$ as a product of disjoint cycles and find the order of σ .
 - b) Let n > 1 be an odd integer. Show that S_n has at least n 1 elements of order 2(n 2).
- ii) Let G be a group. Recall that the *commutator* of two elements $g, h \in G$ is defined as $[g, h] := g^{-1}h^{-1}gh$. Also recall that the commutator subgroup of G is its subgroup [G, G] generated by commutators [g, h], as g, h vary over all the elements of G.
 - a) Show that [G, G] is a normal subgroup of G.
 - b) Show that G/[G, G] is abelian.
 - c) Show that if H is a subgroup of G containing [G, G], then H is normal.
- iii) Let A be a commutative ring. An element $a \in A$ is called nilpotent if there is a positive integer n such that $a^n = 0$. The nilradical N of A is the subset of A consisting of all the nilpotent elements of A.
 - a) Suppose a, b are nilpotent elements of A. Show that -a, a + b, ab are also nilpotent. Conclude that the nilradical N is a subring of A.
 - b) Show that the nilradical N is an ideal of A.
 - c) Show that the nilradical N is contained in every prime ideal of A.
- iv) Let F be a field and let V be a finite dimensional F-vector space. Let V^* denote the dual of V, i.e. V^* is the vector space of all linear functionals from V to F. Let $\operatorname{End}_F(V)$ be the F-vector space of all linear transformations $V \to V$.
 - a) For $v \in V$ and $f \in V^*$, let $T_{v,f} \in \operatorname{End}_F(V)$ be defined by $T_{v,f}(w) := f(w)v$ for all $w \in V$. Show that the map $\psi: V \times V^* \to \operatorname{End}_F(V)$ given by $\psi(v, f) := T_{v,f}$ is a F-bilinear map.
 - b) Show that ψ induces an **isomorphism** $\tilde{\psi}: V \otimes_F V^* \to \operatorname{End}_F(V)$.
- v) a) Show that $\alpha = \sqrt{5} + \sqrt{7}$ is algebraic over \mathbb{Q} by explicitly finding a polynomial $f(x) \in \mathbb{Q}[x]$ of degree 4 having α as a root.
 - b) Show that the f(x) from part a) is irreducible.
 - c) Show that $\mathbb{Q}(\alpha)/\mathbb{Q}$ is Galois and determine its Galois group. Justify your answer.
 - d) Illustrate the Fundamental Theorem of Galois Theory by drawing the lattice of intermediate fields and the corresponding subgroups. You don't have to prove your answer.
- vi) Let $p \ge 3$ be a prime number. Let \mathbb{F}_p and \mathbb{F}_{p^2} be the finite fields of size p and p^2 respectively. Show that the map $\phi : \mathbb{F}_{p^2} \to \mathbb{F}_{p^2}$ defined by $\phi(x) := x^p$ is an automorphism of \mathbb{F}_{p^2} that fixes \mathbb{F}_p .