Ph.D. Qualifying Exam in Analysis

January 12, 2018

There are 10 questions on this three-hour exam. Answer as many of them as you can

- 1. Suppose f and g are continuous functions on \mathbb{R} and f = g almost everywhere on \mathbb{R} . Prove that f = geverywhere on \mathbb{R} .
- 2. Suppose E_1, E_2, E_3, \ldots are measurable subsets of [0, 1] such that $E_m \cap E_n = \emptyset$ whenever $m \neq n$. Show that $\lim_{n \to \infty} m(E_n) = 0.$
- 3. Suppose F is a measurable set in \mathbb{R}^n with finite measure, and suppose $\{E_k\}_{k\in\mathbb{N}}$ and E are Lebesgue measurable subsets of F. Show that if $\chi_{E_k}(x)$ converges pointwise to $\chi_E(x)$ on \mathbb{R}^n as $k \to \infty$, then $m(E_k)$ converges to m(E).
- 4. Suppose $\{f_n\}$ is a sequence of nonnegative measurable functions on a measurable set $E \subset \mathbb{R}$, and suppose that $\{f_n\}$ converges in measure to a function f on E. Show that

$$\int_E f \, dx \le \liminf_{n \to \infty} \int_E f_n \, dx.$$

5. Show that

$$\lim_{n \to \infty} \int_0^\infty \frac{\sin(x^n)}{x^n} \ dx = 1$$

Justify all the steps in your answer. (Hint: consider the integrals over [0,1] and $[1,\infty)$ separately.)

- 6. Define $\pi : \mathbb{R}^2 \to \mathbb{R}$ by $\pi(x, y) = x$. Show that there exists a measurable subset $E \subseteq \mathbb{R}^2$ such that $\pi(E)$ is not measurable.
- 7. Using the Fubini/Tonelli theorems to justify all steps, evaluate the integral

$$\int_0^1 \int_y^1 x^{-3/2} \cos(\pi y/2x) \, dx \, dy.$$

8. Suppose μ and ν are finite positive measures on the measurable space (X, Σ) . Show that there is a nonnegative measurable function f on X such that for all E in Σ ,

$$\int_E (1-f) \ d\mu = \int_E f \ d\nu.$$

9. Suppose $E \subset \mathbb{R}$ is a measurable set, with $0 < m(E) < \infty$, and $1 \leq q < r < \infty$. Prove that if f is a measurable function on E, then

$$\left(\frac{1}{m(E)}\int_E |f|^q \ dx\right)^{1/q} \le \left(\frac{1}{m(E)}\int_E |f|^r\right)^{1/r}$$

10. Let ℓ^2 be the Hilbert space of all sequences $x = (x_1, x_2, x_3, \dots)$ such that $\sum_{i=1}^{\infty} |x_i|^2 < \infty$, with norm $||x|| = \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{1/2}$. Let ℓ_0^2 be the set of all $x = (x_1, x_2, x_3, \dots)$ such that $x_i \neq 0$ for only finitely many *i*. Show that ℓ_0^2 is dense in ℓ^2 .