Ph.D. Qualifying Exam in Analysis
 August 14, 2017

There are 9 questions on this three-hour exam. Answer as many of them as you can.

1. Let $E \subseteq R$ and suppose that for every $\epsilon>0$ there exist open subsets U and V of \mathbb{R} such that $U \subseteq E \subseteq V$ and $m(V-U)<\epsilon$, where m is Lebesgue measure. Prove that E is measurable.
2. Suppose $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of integrable functions on a measure space (X, \mathcal{A}, μ), and f is an integrable function on X such that $\sum_{n=1}^{\infty} \int_{X}\left|f-f_{n}\right| d \mu<\infty$. Show that f_{n} converges to f pointwise almost everywhere on X.
3. Suppose $\left\{f_{n}\right\}_{n \in \mathbb{N}}, f$, and g are integrable functions on a measure space (X, \mathcal{A}, μ), such that f_{n} converges to f in measure, and $\left|f_{n}\right| \leq g$ on X for all $n \in \mathbb{N}$. Prove that $\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right| d \mu=0$. (Hint: to prove that a sequence a_{n} converges to zero, it is enough to show that every subsequence of a_{n} has, in turn, a subsubsequence that converges to zero.)
4. Suppose $\mu(x)$ is a finite Borel measure on \mathbb{R} such that $\mu(\{x\})=0$ for all $x \in \mathbb{R}$, and define $g_{\mu}(x):=$ $\mu([0, x])$ for $x \in \mathbb{R}$. Show that g_{μ} is continuous on \mathbb{R}.
5. Suppose g is a nonnegative measurable function on \mathbb{R}, and there exists a constant $C>0$ such that for all $f \in L^{2}$, we have $g f \in L^{2}$ with $\|g f\|_{L^{2}} \leq C\|f\|_{2}$. Show that $g \in L^{\infty}$ with $\|g\|_{\infty} \leq C$. (Hint: consider $f(x)=\chi_{\left[x_{0}, x_{0}+h\right]}$ for $x_{0} \in \mathbb{R}$ and $h>0$.)
6. Suppose $Q(x, y): \mathbb{R} \times \mathbb{R} \rightarrow[0, \infty)$ is measurable, and $\int_{\mathbb{R}} Q(x, y) d y \leq a$ for all $x \in \mathbb{R}$ and $\int_{\mathbb{R}} Q(x, y) d x \leq b$ for all $y \in \mathbb{R}$. For $f(x)$ nonnegative and measurable, define $T f(x):=\int_{\mathbb{R}} Q(x, y) f(y) d y$. Show that $\|T f\|_{L^{2}} \leq \sqrt{a b}\|f\|_{L^{2}}$.
7. Let $f(x)$ be the Cantor-Lebesgue function on $[0,1]$, and define

$$
g(x)= \begin{cases}0 & -\infty<x \leq 0 \\ f(x) & 0 \leq x \leq 1 \\ x & x \geq 1\end{cases}
$$

Let μ_{g} be the Lebesgue-Stieltjes measure on \mathbb{R} corresponding to g (so $\left.\mu_{g}((a, b])=g(b)-g(a)\right)$ for all $a, b \in \mathbb{R}$). Find the Lebesgue decomposition of μ_{g} with respect to Lebesgue measure m. That is, define two measures μ and ν such that $\mu_{g}=\mu+\nu, \mu \ll m$, and $\nu \perp m$.
8. Suppose $f:[0, \infty) \rightarrow \mathbb{R}$ is of bounded variation on $[0, \infty)$. Show that $\lim _{x \rightarrow \infty} f(x)$ exists.
9. Suppose f is differentiable with continuous derivative on $[0,2 \pi]$, and $f(0)=f(2 \pi)$. For $n \in \mathbb{Z}$, define

$$
a_{n}=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} f(x) e^{-i n x} d x
$$

(a) Show that for $n \in \mathbb{Z}$,

$$
\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} f^{\prime}(x) e^{-i n x} d x=i n a_{n}
$$

(b) Conclude from (a) that $\sum_{n=-\infty}^{\infty} n^{2}\left|a_{n}\right|^{2}<\infty$.
(c) Conclude from (b) that $\sum_{n=-\infty}^{\infty}\left|a_{n}\right|<\infty$.

