Real Analysis
Qualifying Examination
Spring 2017

NAME:

I.D. \# :

Complete five (5) of the problems below. If you attempt more than 5 questions, then please clearly indicate which 5 should be graded on this sheet.

1a. Consider the following statement: Let (X, \mathcal{B}, μ) be a measure space and let $\left\{f_{n}\right\}$ be a sequence in $L^{1}(\mu)$ that converges uniformly on X to a function $f \in L^{1}(\mu)$; then

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

If the above statement is true prove it. If the above statement is false, (i) show by example and (ii) add a hypothesis to the above statement that the results is a true statement, and give a proof that your modified statement is indeed true.

Let (X, \mathcal{B}, μ) be a measure space.
1 b . State the following theorems.
(i) Fatou's Lemma
(ii) Monotone Convergence Theroem
(iii) Dominated Convergence Thereom

1c. Prove that (ii) implies (i).
2a. State Vitali covering lemma.
2 b. Let f be an increasing real-valued function on $[a, b]$, and

$$
E_{u, v}=\left\{x: D^{+} f(x)>u>v>D_{-} f(x)\right\}
$$

where u and v are rational numbers,

$$
D^{+} f(x)=\varlimsup_{h \rightarrow 0+} \frac{f(x+h)-f(x)}{h} \quad \text { and } \quad D_{-} f(x)=\lim _{h \rightarrow 0+} \frac{f(x)-f(x-h)}{h}
$$

Prove that the outer measure $m^{*}\left(E_{u, v}\right)=0$.
3a. State Ascoli-Arzelá Theorem (on a metric space (X, d))
3b. Let Δ be the unit disk on the complex plane (i.e. $\{z:|z|<1\}$). Let $\left\{f_{n}\right\}_{1}^{\infty}$ be the sequence of analytic functions on Δ such that $\left|f_{n}(z)\right| \leq M$ independent of n and $z \in \Delta$. Prove that there is a subsequence $f_{n_{k}}$ which converges uniformly to every compact subset of Δ. (Hint: Use the Cauchy formula $f_{n}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f_{n}(w)}{w-z} d w$ and Ascoli-Arzelá theorem)

4a. Let f be a real-valued twice differentiable convex function on an open interval (a, b). How does a relevant algebraic inequality meet a differential inequality and how does a differential inequality meet an algebraic inequality? Justify your answers.
4b. Use the convexity to prove Jensen's inequality.
4 c . Use $\# 4 \mathrm{~b}$ to prove an arithmetic mean is no less than a geometric mean for $a_{1}, \ldots, a_{n}>0$.
$5 a$. Define an n-dimensional differentiable manifold.
$5 b$. State the implicit function theorem on a differentiable manifold.
6a. State Orthogonal Projection Theorem in Hilbert Space.
6b. Let M be a subspace of a a Hilbert space V. Let x be in V Prove that if y is in the subspace M, then $(x-y) \perp M$ if and only if y is the unique point in M closest to x, that is, y is the "best approximation" to x in M

6c. State Riesz Representation Theorem in Hilbert Space
6 d . Let f be a linear functional on a Hilbert space $V, M=\{x \in V \mid f(x)=0\}$, and $M \neq V$. Let $x \in V \backslash M$ and x^{\perp} be its component orthogonal to M. Find an explicitly constant c so that

$$
x-c x^{\perp} \quad \text { is orthogonal to } x^{\perp}
$$

7a. Let f denote a real-valued, continuous and strictly increasing function on $[0, c]$ with $c>0$ and $f(0)=0$. Let f^{-1} denote the inverse function of f. Then, for all $a \in[0, c]$ and $b \in[0, f(c)]$

$$
(*) \quad a b \leq \int_{0}^{a} f(x) d x+\int_{0}^{b} f^{-1}(x) d x
$$

with equality if and only if $b=f(a)$.
7b. Find an appropriate f in $\# 7$ a so that Cauchy inequality is a special case of $(*)$ in $\# 7 \mathrm{a}$.
7c. Find an appropriate f in \# 7a so that Young's inequality is a special case of $(*)$ in $\# 7$ a.

Recall that a real-valued function f on $[0,1]$ is said to be Hölder continuous of order α if there exists a constant C such that

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha}
$$

for every $x, y \in[0,1]$. Define

$$
\|f\|_{\alpha}=\max \left|f(x)+\sup \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}\right|
$$

8. Let $C^{0, \alpha}[0,1]$ be the set of Hölder continuous function f defined on $[0,1]$ of order α. Prove that $C^{0, \alpha}[0,1]$ under $\|f\|_{\alpha}$ is a Banach space.

9a. State Hahn-Banach Theorem
9 b . Let X be a complex vector space, S a linear subspace, p a real-valued function on X such that $p(x+y) \leq p(x)+p(y)$, and $p(\alpha x)=|\alpha| p(x)$. Let f be a complex linear functional on S such that $|f(s)| \leq p(s)$ for all s in S. Use \#9a to prove that there is a linear functional F defined on X such that $F(s)=f(s)$ for $s \in S$ and $|F(x)| \leq p(x)$ for all x in X.

10a. State Radon-Nikodym Theorem
10b. Let μ and ν be σ-finite. Show that if $\nu \ll \mu$ and $\mu \ll \nu$, then their Radon-Nikodym derivatives satisfy

$$
\left[\frac{d \nu}{d \mu}\right]=\left[\frac{d \mu}{d \nu}\right]^{-1}
$$

where $\nu \ll \mu$ denote ν is absolutely continuous with respect to μ.
11a. State the Fubini theorem.

4
11b. Let $X=Y=[0,1], \mu=$ counting measure on $[0,1], \lambda=$ Lebegue measure on Y. Let

$$
f(x)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

Does the Fubini theorem hold in this case? Justify your answer?
12a. Let f be a continuously differentiable on an interval containing $[a, b]$. Prove that

$$
(* *) \quad \int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a) .
$$

12b. Let f be an increasing, real-valued, differentiable a.e. on $[a, b]$ and the derivative f^{\prime} is measurable. Prove or disprove that the same conclusion ($* *$) holds in $\# 12$ a for f ?
12c. Prove that if f is absolutely continuous on each $[c, d] \subset(a, b) \subset \mathbb{R}, f$ is differentiable a.e. in (a, b).

