Qualifying Exam: Algebra

Name: \qquad

Please give complete arguments and use good mathematical notation. Results from the notes can of course be used. You can also use results from earlier parts of a problem later on, even if you did not answer those questions.

1. $(\mathbf{3}+\mathbf{2}+\mathbf{3 + 4}$ points) Let $H, K \subseteq G$ be subgroups of a group G.
(a) Give an example that shows that $H K:=\{h k: h \in H, k \in K\}$ need not be a subgroup.
(b) However, show that if $K \unlhd G$, then $H K$ is a subgroup of G.
(c) Now assume that $H, K \unlhd G, H \cap K=1$. Prove that then $h k=k h$ for all $h \in H, k \in K$. Then show that the map $H \times K \rightarrow H K,(h, k) \mapsto h k$ defines an isomorphism.
(d) Let G be a group of order 21. Show that either $G \cong \mathbb{Z}_{3} \times \mathbb{Z}_{7}\left(\cong \mathbb{Z}_{21}\right)$, or G has 7 Sylow 3 -subgroups.
2. (4 points) Let $p<q<r$ be distinct primes. Show that a group of order $p q r$ is not simple. Suggestion: Try to show that for at least one of $s=p, q, r$, there is only one Sylow s-subgroup. (Perhaps assume this didn't happen, and derive a contradiction.)
3. (3 points) Let G be a finite group with center C. Show that either $C=G$ or $|C| \leq|G| / 4$.
4. $(3+2+3$ points) Consider the group

$$
G=\left\langle a, b \mid a^{2}=b^{3}=1, a b a b a b=1\right\rangle .
$$

(a) Show that G has at most 15 elements (or establish a slightly better bound if you can). Suggestion: First notice that every group element can be written as a word in the generators only (no inverses). Then show that every such word of length 5 or more can be rewritten as a shorter word, and finally consider words of length at most 4.
(b) Apply Dyck's Theorem to prove that there is a homomorphism $\varphi: G \rightarrow A_{4}$ that sends $\varphi(a)=(12)(34), \varphi(b)=(123)$.
(c) Prove that φ from part (b) is in fact an isomorphism; in particular, G has 12 elements.
5. (4 points) Find all $a \in \mathbb{Z}_{3}$ for which the quotient ring

$$
\mathbb{Z}_{3}[x] /\left(x^{3}+x^{2}+a x+1\right)
$$

is a field.
6. (3 points) Let E / F be a field extension, and let $a, b \in E$ be algebraic over F with minimal polynomials of degree m and n, respectively. Show that $[F(a, b): F] \leq m n$, and if m, n are relatively prime, then $[F(a, b): F]=m n$.
7. (5 points) Let E / F be a field extension, $a \in E \backslash F$, and assume that $F(a) / F$ is Galois. Assume further that there is an automorphism $\varphi \in \operatorname{Gal}(F(a) / F)$ that maps $\varphi(a)=a^{-1}$.

Show that then $[F(a): F]$ is even, and $[F(a): F]=2\left[F\left(a+a^{-1}\right): F\right]$. Suggestion: What is the order of φ ? Consider associated intermediate fields.
8. (5 points) Find the Galois group of $f(x)=x^{4}-5 x^{2}+6 \in \mathbb{Q}[x]$: describe the automorphisms. What familiar group is the Galois group isomorphic to?

