## Real Analysis

## Qualifying Examination

Fall 2016
NAME:
I.D. \# :

Complete five (5) of the problems below. If you attempt more than 5 questions, then please clearly indicate which 5 should be graded on this sheet.

1a. Consider the following statement: Let $(X, \mathcal{B}, \mu)$ be a measure space and let $\left\{f_{n}\right\}$ be a sequence in $L^{1}(\mu)$ that converges uniformly on $X$ to a function $f \in L^{1}(\mu)$; then

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

If the above statement is true prove it. If the above statement is false, $(i)$ show by example and ( $i i$ ) add a hypothesis to the above statement that the results is a true statement, and give a proof that your modified statement is indeed true.

Let $(X, \mathcal{B}, \mu)$ be a measure space.
$1 b$. State the following theorems.
(i) Monotone Convergence Theroem
(ii) Fatou's Lemma
(iii) Dominated Convergence Thereom

1c. Prove that (ii) implies (iii).
$2 a$. Let $f$ be an increasing real-valued function on $[a, b]$, and

$$
E_{u, v}=\left\{x: D^{+} f(x)>u>v>D_{-} f(x)\right\}
$$

where $u$ and $v$ are rational numbers,

$$
D^{+} f(x)=\varlimsup_{h \rightarrow 0+} \frac{f(x+h)-f(x)}{h} \quad \text { and } \quad D_{-} f(x)=\lim _{h \rightarrow 0+} \frac{f(x)-f(x-h)}{h}
$$

Prove that the outer measure $m^{*}\left(E_{u, v}\right)=0$.
2 b. Let $f$ be an increasing, real-valued, differentiable a.e. on $[a, b]$ and the derivative $f^{\prime}$ is measurable. prove that

$$
\int_{a}^{b} f^{\prime}(x) d x \leq f(b)-f(a)
$$

3a. State Ascoli-Arzelá Theorem (on a metric space $(X, d)$ )
3b. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable functions, $n=1,2, \ldots$, with $f_{n}(0)=0$ and $\left|f^{\prime}(0)\right| \leq 3$ for all $n, x$. Suppose

$$
\lim _{n \rightarrow \infty} f_{n}(x)=g(x)
$$

for all $x$. Prove that $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
(Hint: Use the mean value theorem and Ascoli-Arzelá theorem)

4a. Let $f$ be a real-valued twice differentiable function on an open interval $(a, b)$. Prove that $f$ is convex if and only if $f^{\prime \prime} \geq 0$.

4 b . Let $\left\{\alpha_{n}\right\}$ be a sequence of nonnegative numbers whose sum is 1 and $\left\{\xi_{n}\right\}$ be a sequence of positive numbers. Then

$$
\prod_{n=1}^{\infty} \xi_{n}^{\alpha_{n}} \leq \sum_{n=1}^{\infty} \alpha_{n} \xi_{n}
$$

5a. Define an $n$-dimensional differentiable manifold.
5b. State the inverse function theorem on differentiable manifolds.

6a. State Orthogonal Projection Theorem in Hilbert Space.
6b. Let $M$ be a subspace of a a Hilbert space $V$. Let $x$ be in $V$ Prove that if $y$ is in the subspace $M$, then $(x-y) \perp M$ if and only if $y$ is the unique point in $M$ closest to $x$, that is, $y$ is the "best approximation" to $x$ in $M$

6c. Prove Riesz Representation Theorem in Hilbert Space (not necessarily separable ) by using Orthogonal Projection Theorem.

Let $\mathcal{H}$ be a Hilbert space with the inner product $\langle, \quad\rangle$ and $T$ be a linear operator on $\mathcal{H}$.
6d. Prove that for every linear operator $T$ on $\mathcal{H}$ there exists a unique linear operator $T^{*}$ on $\mathcal{H}$ such that

$$
\langle T \alpha, \beta\rangle=\left\langle\alpha, T^{*} \beta\right\rangle
$$

for every $\alpha$ and $\beta$ in $\mathcal{H}$. (We call such $T^{*}$ an adjoint of $T$.)

Let $\mathcal{H}_{1}, \mathcal{H}_{2}$ and $\mathcal{H}_{3}$ be Hilbert spaces. We write $\|\|$ to denote the norm on each of these spaces. Consider linear operators $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ and $S: \mathcal{H}_{2} \rightarrow \mathcal{H}_{3}$ such that $S T=0$. Let $S \alpha=0$. Consider the operator $L=T T^{*}+S^{*} S: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$
7a. Suppose for some positive constant $C$,

$$
\left.\|f\|^{2} \leq C\left(\left\|T^{*} f\right\|^{2}\right)+\|S f\|^{2}\right)
$$

for every $f$ in the intersection of the domain of $T^{*}$ with the domain of $S$. Prove that $L$ is invertible, i.e. $L$ has an inverse $L^{-1}$.

7 b . With the same assumption and notation as in 7 a , we write $G=L^{-1}$. Then we have the Hodge decomposition

$$
\alpha=T T^{*} G \alpha+S^{*} S G \alpha
$$

(We call such $G$ Green's operator.)
If we assume in $7 \mathrm{~b}, S \alpha=0$, then it follows that $S G \alpha=0$. If we put $u=T^{*} G \alpha$,
7c. Prove that $u$ is the unique solution to

$$
T u=\alpha .
$$

Recall that a real-valued function $f$ on $[0,1]$ is said to be Hölder continuous of order $\alpha$ if there exists a constant $C$ such that

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha}
$$

for every $x, y \in[0,1]$. Define

$$
\|f\|_{\alpha}=\max \left|f(x)+\sup \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}\right|
$$

8. Prove that for $0<\alpha \leq 1$, the set of functions with $\|f\|_{\alpha} \leq 1$ is a compact subset of the space $C[0,1]$ of real-valued continuous functions on $[0,1]$.

9a. State Hahn-Banach Theorem
9b. Use 9a to prove that Reisz Representation Theorem does not hold for Banach space $L^{\infty}[0,1]$, or the dual space of $L^{\infty}[0,1]$ is not $L^{1}[0,1]$.

10a. State Radon-Nikodym Theorem
10b. Let $\mu, \nu$, and $\lambda$ be $\sigma$-finite. Show that if $\nu \ll \mu \ll \lambda$, then their RadonNikodym derivatives satisfy

$$
\left[\frac{d \nu}{d \lambda}\right]=\left[\frac{d \nu}{d \mu}\right]\left[\frac{d \mu}{d \lambda}\right]
$$

where $\nu \ll \mu$ denote $\nu$ is absolutely continuous with respect to $\mu$.
11a. State the Fubini theorem.
11b. Let $X=Y=[0,1], \mu=$ Lebegue measure on $[0,1], \lambda=$ counting measure on $Y$. Let

$$
f(x)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

Does the Fubini theorem hold in this case? Justify your answer?

12a. Prove that the Lebesque measure of the Cantor set is zero.
For any set $S \subset \mathbb{R}$, we write $|S|$ for the diameter of $S$ :

$$
|S|:=\sup \{|x-y|: x, y \in S\}
$$

If $|S|<\infty$ and $\alpha>0$ we define the $\alpha$-covered length of $S$ as

$$
H_{\alpha}(S)=\inf \left\{\sum_{n=1}^{\infty}\left|C_{n}\right|^{\alpha}: S \subseteq \bigcup_{n=1}^{\infty} C_{n} \quad \text { where } \quad C_{n} \subset \mathbb{R}\right\}
$$

The Hausdorff dimension of $S$ is defined as

$$
\operatorname{dim}_{H}(S)=\inf \left\{\alpha>0: H_{\alpha}(S)=0\right\}
$$

12b. Prove that the Hausdorff dimension of the Cantor set is $\frac{\log 2}{\log 3}$

