Provide justification for all of your answers.

- 1. (10 points) Let G be a finite group, H a subgroup of G and N a normal subgroup of G. Show that if the order of H is relatively prime to the index of N in G, then $H \subseteq N$.
- 2. (10 points) Let G be a group of order $231 = 3 \cdot 7 \cdot 11$. Prove that a Sylow 11-subgroup is contained in the center of G.
- 3. (10 points) Let m, n be positive integers, such that m divides n.
 - (a) Show that the natural map $\phi : \mathbb{Z}_n \to \mathbb{Z}_m$ given by $\phi(a + n\mathbb{Z}) = a + m\mathbb{Z}$ is a surjective ring homomorphism.
 - (b) If U_n , U_m are the units of \mathbb{Z}_n and \mathbb{Z}_m , respectively, show that $\phi: U_n \to U_m$ is a surjective group homomorphism.
- 4. (10 points) Find all the values of a in \mathbb{Z}_3 such that the quotient ring

$$\mathbb{Z}_3[x]/(x^3 + x^2 + ax + 1)$$

is a field. Justify your answer.

- 5. (10 points) Show that $\mathbb{Z}(\sqrt{5}) = \{m + n\sqrt{5} | m, n \in \mathbb{Z}\}\$ is not a unique factorization domain.
- 6. (10 points) Let $\alpha = \sqrt{2} + \sqrt{3}$ and $E = \mathbb{Q}(\alpha)$.
 - (a) Find the minimal polynomial m(x) of α over \mathbb{Q} and the degree $[E:\mathbb{Q}]$.
 - (b) Find the splitting field K of m(x) over \mathbb{Q} and the order of the Galois group $Gal(K/\mathbb{Q})$.
- 7. (10 points) Let $\epsilon = \cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n})$ be a primitive *n*-th root of 1.
 - (a) If $\Phi_n(x)$ is the minimal polynomial of ϵ over \mathbb{Q} , show that $\mathbb{Q}(\epsilon)$ is a splitting field of $\Phi_n(x)$ over \mathbb{Q} .
 - (b) Prove that the Galois group of $\mathbb{Q}(\epsilon)$ over \mathbb{Q} is isomorphic to the group of units of \mathbb{Z}_n .