Provide justification for all of your answers.

- 1. (10 points) Let G be a group and let $\mathcal{Z}(G)$ be its center. Prove
 - (a) If $G/\mathcal{Z}(G)$ is cyclic, then G is abelian.
 - (b) If G is of order p^2 , where p is prime, then G is abelian.
- 2. (10 points) A group G is solvable if it has a series

 $\{1\} = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_k = G$

such that G_{i-1} is normal in G_i and the quotient group G_i/G_{i-1} is abelian for $1 \le i \le k$. Prove that a group G of order $105 = 3 \cdot 5 \cdot 7$ is solvable.

- 3. (10 points) Let R be a commutative ring with 1. The Jacobson radical of R, denoted J(R) is the intersection of all maximal ideals of R.
 - (a) Prove that $a \in J(R)$ if and only if 1 + ar is a unit in R for all $r \in R$.
 - (b) Let k be a field. Prove J(k[x]) = 0.
- 4. (20 points)
 - (a) Is $\langle x^2 + 1, 3 \rangle$ a prime ideal of $\mathbb{Z}[x]$? Prove your answer is correct.
 - (b) Prove or disprove: If p is prime, then every non-zero prime ideal of $\mathbb{Z}/p\mathbb{Z}[x]$ is maximal.
 - (c) Prove or disprove: Any irreducible element in an integral domain is prime.
 - (d) Prove or disprove: Any prime element in an integral domain is irreducible.
- 5. (10 points) Let $F \subset E \subset K$ be fields.
 - (a) Prove that K is algebraic over F if and only if K is algebraic over E and E is algebraic over F.
 - (b) Give an example where K/E and E/F are finite Galois extensions, but K/F is not Galois.
- 6. (10 points) Suppose $K = F(\alpha)$, $\alpha \notin F$, is a Galois extension of F. Assume that there exists an element $\sigma \in Gal(K/F)$ satisfying $\sigma(\alpha) = \alpha^{-1}$. Show that the degree of the extension [K:F] is even and that $[F(\alpha + \alpha^{-1}):F] = \frac{1}{2}[K:F]$.
- 7. (15 points) Let $F = \mathbb{F}_{81}$ be the field of 81 elements.
 - (a) Find all subfields of F.
 - (b) Determine the number of elements $\alpha \in F$ such that $F = \mathbb{F}_3(\alpha)$, where \mathbb{F}_3 is the field of 3 elements.
 - (c) Find the number of generators for the multiplicative group F^{\times} of F (i.e. $\beta \in F$ such that $\langle \beta \rangle = F^{\times}$).