Qualifying Exam: Analysis

Name: \qquad

1. (5 points) Let μ, ν be finite Borel measures on \mathbb{R} and assume that

$$
\mu((-\infty, a))=\nu((-\infty, a)) \quad \text { for all } a \in \mathbb{R} .
$$

Show that then $\mu(B)=\nu(B)$ for all Borel sets $B \subset \mathbb{R}$.
Suggestion: Use the regularity of these measures and the fact that open subsets of \mathbb{R} are countable disjoint unions of open intervals.
2. ($3+4$ points) Let μ be a Borel measure on \mathbb{R}, and let $f_{n} \in L^{1}(\mathbb{R}, \mu)$ be a sequence of functions with $f_{n}(x)=0$ for $|x| \leq n$. In addition, assume that: (i) μ is finite; (ii) $\left|f_{n}(x)\right| \leq 1$.
(a) Show that $\int_{\mathbb{R}} f_{n}(x) d \mu(x) \rightarrow 0$.
(b) Show that this need not hold if either assumption [(i) or (ii)] is dropped. (Give counterexamples.)
3. (4+3+1 points) (a) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing, absolutely continuous function. Show that if $E \in \mathcal{B}_{\mathbb{R}}$ with $m(E)=0$, then also $m(F(E))=0$, where $F(E):=\{F(x): x \in E\}$.
Suggestion: Use outer regularity to approximate E by a union of open intervals. What is $F(I)$ for an interval $I=(a, b)$?
(b) Now let F be the Cantor function. Show that there exists an $E \subset \mathbb{R}$ with $m(E)=0, m(F(E))>0$.
Hint: Use the description of F from the proof of Proposition 1.22. See especially the information provided in the last three lines of that proof.
(c) Why do (a) and (b) not contradict each other?
4. (5 points) Let F, G be continuous, increasing functions on \mathbb{R}, and write μ_{F}, μ_{G} for the associated measures (so $\mu_{F}((-\infty, x])=F(x)$ etc.). Prove the following integration by parts formula:

$$
\int_{(a, b)} F(x) d \mu_{G}(x)=-\int_{(a, b)} G(x) d \mu_{F}(x)+F(b) G(b)-F(a) G(a)
$$

Suggestion: Let $T=\{(x, y): a<x<y<b\} \subset \mathbb{R}^{2}$ and evaluate

$$
\int d \mu_{F}(x) \int d \mu_{G}(y) \chi_{T}(x, y)
$$

in two ways. (Please don't forget to justify these manipulations.)
5. $\left(\mathbf{3}+\mathbf{3}+\mathbf{3}\right.$ points) Let $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$.
(a) Show that x will be in the Lebesgue set L_{f} of f if f is continuous at x.
(b) Show that if $x \in L_{f}$, then $|f(x)| \leq(H f)(x)$.
(c) Give an example of a function $f \in L_{\text {loc }}^{1}$ that is not continuous at some point $x \in \mathbb{R}^{n}$ (even after changing f on a null set), but $x \in L_{f}$.
Alternatively, you can also deduce the existence of such examples from general facts about L_{f} and locally integrable functions (rather than construct it explicitly), if you prefer.
6. $(3+3$ points) Let ν be the Borel measure on \mathbb{R} that is generated by the increasing, right-continuous function

$$
F(x)= \begin{cases}0 & x<0 \\ 2 x & 0 \leq x \leq 1 \\ 5 & x>1\end{cases}
$$

(a) Find the Lebesgue decomposition of ν with respect to Lebesgue measure $\mu=m$, that is, find λ, ρ so that $\nu=\lambda+\rho$ and $\lambda \ll \mu, \rho \perp \mu$.
(b) Find the Lebesgue decomposition of ν with respect to $\mu=\delta_{1}$ (so $\mu(\{1\})=$ $1, \mu(\mathbb{R} \backslash\{1\})=0)$.
7. $\left(\mathbf{2}+\mathbf{2}+\mathbf{2}+\mathbf{3}\right.$ points) Find all $p, 1 \leq p \leq \infty$, such that $f \in L^{p}(\mathbb{R})$, for the following functions:
(a) $f(x)=1$;
(b) $f(x)=\frac{1}{x^{2}+1}$;
(c) $f(x)=x^{2} e^{-x^{2}}$;
(d) $f(x)=\sum_{n=1}^{\infty} n^{-1 / 2}(x-n)^{-1 / n} \chi_{(n, n+1)}(x)$
8. (4 points) Let $F: \mathbb{R} \rightarrow \mathbb{C}$ be absolutely continuous with $F^{\prime} \in L^{p}(\mathbb{R}), 1 \leq$ $p<\infty$. Show that there exists a constant $C>0$ so that

$$
|F(x)-F(y)| \leq C|x-y|^{\alpha} \quad(x, y \in \mathbb{R})
$$

with $\alpha=1-1 / p$.
9. $\left(2+2+4\right.$ points) Recall that in \mathcal{D}^{\prime}, we have that

$$
\lim _{\epsilon \rightarrow 0+0} \frac{1}{x-i \epsilon}=\mathrm{PV}-\frac{1}{x}+i \pi \delta,
$$

(a) Deduce from this that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0+} \frac{\epsilon}{x^{2}+\epsilon^{2}}=\pi \delta . \tag{1}
\end{equation*}
$$

(b) By formally taking derivatives on both sides, we obtain that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0+} \frac{-2 \epsilon x}{\left(x^{2}+\epsilon^{2}\right)^{2}} \stackrel{?}{=} \pi \delta^{\prime} \tag{2}
\end{equation*}
$$

In general, is it correct to differentiate limiting relations in \mathcal{D}^{\prime} in this way?
(c) Prove (2) directly. You can make use of (1), if you want.

Please give complete arguments and use good mathematical notation.

