Name:....

1. (5 points) Let μ , ν be finite Borel measures on \mathbb{R} and assume that

$$\mu((-\infty, a)) = \nu((-\infty, a))$$
 for all $a \in \mathbb{R}$

Show that then $\mu(B) = \nu(B)$ for all Borel sets $B \subset \mathbb{R}$.

Suggestion: Use the regularity of these measures and the fact that open subsets of \mathbb{R} are countable disjoint unions of open intervals.

- 2. (3+4 points) Let μ be a Borel measure on \mathbb{R} , and let $f_n \in L^1(\mathbb{R}, \mu)$ be a sequence of functions with $f_n(x) = 0$ for $|x| \leq n$. In addition, assume that: (i) μ is finite; (ii) $|f_n(x)| \leq 1$.
 - (a) Show that $\int_{\mathbb{R}} f_n(x) d\mu(x) \to 0$.

(b) Show that this need not hold if either assumption [(i) or (ii)] is dropped. (Give counterexamples.)

3. (4+3+1 points) (a) Let $F : \mathbb{R} \to \mathbb{R}$ be an increasing, absolutely continuous function. Show that if $E \in \mathcal{B}_{\mathbb{R}}$ with m(E) = 0, then also m(F(E)) = 0, where $F(E) := \{F(x) : x \in E\}.$

Suggestion: Use outer regularity to approximate E by a union of open intervals. What is F(I) for an interval I = (a, b)?

(b) Now let F be the Cantor function. Show that there exists an $E \subset \mathbb{R}$ with m(E) = 0, m(F(E)) > 0.

Hint: Use the description of F from the proof of Proposition 1.22. See especially the information provided in the last three lines of that proof.

- (c) Why do (a) and (b) not contradict each other?
- 4. (5 points) Let F, G be continuous, increasing functions on \mathbb{R} , and write μ_F , μ_G for the associated measures (so $\mu_F((-\infty, x]) = F(x)$ etc.). Prove the following *integration by parts* formula:

$$\int_{(a,b)} F(x) \, d\mu_G(x) = -\int_{(a,b)} G(x) \, d\mu_F(x) + F(b)G(b) - F(a)G(a)$$

Suggestion: Let $T = \{(x,y): a < x < y < b\} \subset \mathbb{R}^2$ and evaluate

$$\int d\mu_F(x) \int d\mu_G(y) \, \chi_T(x,y)$$

in two ways. (Please don't forget to justify these manipulations.)

5. (3+3+3 points) Let $f \in L^1_{\text{loc}}(\mathbb{R}^n)$.

(a) Show that x will be in the Lebesgue set L_f of f if f is continuous at x.

(b) Show that if $x \in L_f$, then $|f(x)| \le (Hf)(x)$.

(c) Give an example of a function $f \in L^1_{\text{loc}}$ that is not continuous at some point $x \in \mathbb{R}^n$ (even after changing f on a null set), but $x \in L_f$.

Alternatively, you can also deduce the existence of such examples from general facts about L_f and locally integrable functions (rather than construct it explicitly), if you prefer.

6. (3+3 points) Let ν be the Borel measure on \mathbb{R} that is generated by the increasing, right-continuous function

$$F(x) = \begin{cases} 0 & x < 0\\ 2x & 0 \le x \le 1\\ 5 & x > 1 \end{cases}$$

(a) Find the Lebesgue decomposition of ν with respect to Lebesgue measure $\mu = m$, that is, find λ, ρ so that $\nu = \lambda + \rho$ and $\lambda \ll \mu, \rho \perp \mu$.

(b) Find the Lebesgue decomposition of ν with respect to $\mu = \delta_1$ (so $\mu(\{1\}) = 1$, $\mu(\mathbb{R} \setminus \{1\}) = 0$).

7. (2+2+2+3 points) Find all $p, 1 \le p \le \infty$, such that $f \in L^p(\mathbb{R})$, for the following functions:

(a)
$$f(x) = 1$$
; (b) $f(x) = \frac{1}{x^2 + 1}$; (c) $f(x) = x^2 e^{-x^2}$;
(d) $f(x) = \sum_{n=1}^{\infty} n^{-1/2} (x - n)^{-1/n} \chi_{(n,n+1)}(x)$

8. (4 points) Let $F : \mathbb{R} \to \mathbb{C}$ be absolutely continuous with $F' \in L^p(\mathbb{R}), 1 \leq p < \infty$. Show that there exists a constant C > 0 so that

$$|F(x) - F(y)| \le C|x - y|^{\alpha} \qquad (x, y \in \mathbb{R}),$$

with $\alpha = 1 - 1/p$.

9. (2+2+4 points) Recall that in \mathcal{D}' , we have that

$$\lim_{\epsilon \to 0+} \frac{1}{x - i\epsilon} = \mathrm{PV} - \frac{1}{x} + i\pi\delta,$$

(a) Deduce from this that

$$\lim_{\epsilon \to 0+} \frac{\epsilon}{x^2 + \epsilon^2} = \pi \delta.$$
(1)

(b) By formally taking derivatives on both sides, we obtain that

$$\lim_{\epsilon \to 0+} \frac{-2\epsilon x}{(x^2 + \epsilon^2)^2} \stackrel{?}{=} \pi \delta'.$$
⁽²⁾

In general, is it correct to differentiate limiting relations in \mathcal{D}' in this way?

(c) Prove (2) directly. You can make use of (1), if you want.

Please give complete arguments and use good mathematical notation.