Qualifying Exam: Analysis

Name: \qquad

1. (3+2 points) (a) Let μ be a σ-finite measure on (X, \mathcal{M}) with $\mu(X)=\infty$. Show that for every $C>0$, there exists an $E \in \mathcal{M}$ with $C<\mu(E)<\infty$.
(b) Give an example that shows that this need not hold if we drop the assumption that μ is σ-finite.
2. (2+2 points) Let $f \in L^{1}(X, d \mu)$.
(a) Show that $\{x \in X:|f(x)|>0\}$ is a σ-finite set (that is, it can be written as a countable union of sets of finite measure).
(b) Show that it is possible to have

$$
\mu(\{x \in X:|f(x)|>0\})=\infty
$$

(please give a concrete example of a function $f \in L^{1}$ on a space X where this happens).
3. $\left(\mathbf{2}+\mathbf{2}+\mathbf{2 + 2}\right.$ points) Consider the functions $f_{n}=n^{2} \chi_{(0,1 / n)}$ (note that $f_{n} \in$ $\left.L^{1}(\mathbb{R})\right)$. Does the sequence f_{n} converge
(a) pointwise almost everywhere?
(b) in L^{1} ?
(c) in measure?
(d) in $\mathcal{D}^{\prime}(\mathbb{R})$?

In those cases where it does converge, please also identify the limit.
4. (5 points) Consider the increasing, right-continuous function

$$
F(x)=\left\{\begin{array}{ll}
0 & x<0 \\
1+x & x \geq 0
\end{array},\right.
$$

and let $\nu=\nu_{F}$ be the associated Borel measure on $\mathbb{R}($ so $\nu((a, b])=F(b)-$ $F(a)$). Find the Lebesgue decomposition of ν with respect to:
(a) $\mu=m$;
(b) $\mu=\delta$, the Dirac measure at 0 ;
(c) the Cantor measure μ.

In other words, write ν as $\nu=\rho+\lambda$ with $\rho \ll \mu, \lambda \perp \mu$. Please clearly identify the measures λ, ρ in each case.
5. (3 points) Let $E \subset \mathbb{R}^{n}$ be a Borel set with $m(E)>0$. Show that for every $\epsilon>0$, there exists an open ball $B=B(r, x)$ so that

$$
m(E \cap B) \geq(1-\epsilon) m(B)
$$

6. (5 points) Let $f \in L^{1}(\mathbb{R})$. Prove that

$$
\int_{-1}^{1} \widehat{f}(\xi) e^{2 \pi i \xi x} d \xi=(f * D)(x)
$$

where

$$
D(t)=\frac{\sin 2 \pi t}{\pi t}
$$

Please don't just give the formal calculation; carefully justify all steps.
Suggestion: Use the definition of the Fourier transform and then Fubini-Tonelli to evaluate the resulting iterated integral.
7. (3+3 points) Please give an example of a function $f:(0, \infty) \rightarrow \mathbb{C}$ with the following properties:
(a) $f \in L^{p}(0, \infty)$ for $2 \leq p \leq \infty$, but $f \notin L^{p}(0, \infty)$ if $1 \leq p<2$;
(b) $f \in L^{p}(0, \infty)$ for $2<p<4$, but not for p outside this range
8. ($3+3$ points) Let μ_{n} be a sequence of finite Borel measures on $[0,1]$.
(a) Suppose that

$$
\lim _{n \rightarrow \infty} \int_{[0,1]} f(x) d \mu_{n}(x)
$$

exists for every $f \in C[0,1]$. Show that then there exists another finite Borel measure μ on $[0,1]$ so that

$$
\lim _{n \rightarrow \infty} \int_{[0,1]} f(x) d \mu_{n}(x)=\int_{[0,1]} f(x) d \mu(x)
$$

for all $f \in C[0,1]$.
(b) Show that

$$
\mu_{n}=\frac{1}{n} \sum_{j=1}^{n} \delta_{j / n}
$$

satisfies the assumptions from part (a) (δ_{x} denotes the Dirac measure at x), and identify the limit measure μ.
9. (5 points) Let $F \in \mathcal{D}^{\prime}(\mathbb{R})$ be the distribution generated by the $L_{\text {loc }}^{1}$ function $F(x)=\ln |x|$. Prove that (in $\mathcal{D}^{\prime}(\mathbb{R})$)

$$
F^{\prime}=\mathrm{PV}-\frac{1}{x}
$$

(Recall that this latter distribution was defined as

$$
\left.\left\langle\mathrm{PV}-\frac{1}{x}, \phi\right\rangle=\lim _{y \rightarrow 0+} \int_{|x|>y} \frac{\phi(x)}{x} d x .\right)
$$

Suggestion: As the first step, show that if f is a bounded measurable function, then

$$
\lim _{y \rightarrow 0+} \int_{-y}^{y} f(x) \ln |x| d x=0
$$

Then use this fact and integration by parts to compute $\left\langle F^{\prime}, \phi\right\rangle$.

Please give complete arguments and use good mathematical notation.

