Algebra Qualifying Exam August 11th, 2014

Instructions: Provide justification for each of your answers and make your arguments clear, but try to avoid excessive detail. Complete any $\mathbf{7}$ out of $\mathbf{8}$ for full credit.

1. (a) State and prove the Orbit-Stabilizer theorem for a finite group G acting on a set X.
(b) Let G be a group of order 27 acting on a set X of size $|X|=50$. Show that there are at least two elements of X which are fixed by G i.e., there are elements x_{i}, x_{j} distinct each with isotropy group G.
2. Indicate whether the following statements are TRUE or FALSE. If you believe a given statement is True, then provide a short proof; if False, then construct a counterexample.
(a) If the ring R is a PID, then in R every prime ideal is a maximal ideal.
(b) If a group G has the property that every proper subgroup is abelian, then G must also be abelian.
(c) If a group G has even order, then it must contain a subgroup of index 2.
3. Let R be the commutative ring $R=\mathbf{Z}[x]$. Consider the ideal $\mathcal{I}=\left(2, x^{2}+x+1\right) \subseteq R$.
(a) Is \mathcal{I} a maximal ideal? Identify (with proof/explanation) the quotient ring R / \mathcal{I}.
(b) Let P be a prime ideal of R such that $P \cap \mathbf{Z}=\{0\}$. Show that P is a principal ideal.
4. Let R be a commutative ring with 1 and let \mathcal{I} be an ideal of R. Recall that \mathcal{I} is called a radical ideal if its radical $\mathcal{R}(\mathcal{I})=\left\{r \in R: r^{n} \in \mathcal{I}\right.$ for some $\left.n\right\}=\mathcal{I}$ equals itself. Show that every prime ideal of R is a radical ideal.
5. Prove that there is no simple group of order $108=4 \cdot 27$. (Hint: Let P be a Sylow 3 -subgroup of such a group G. Consider the left action of G on the set of cosets G / P which is a transitive action. Conclude that one has a non-trivial homomorphism, $G \rightarrow S_{4}$, and thereby conclude G has a proper, normal subgroup.)
6. Let $p(x) \in \mathbf{Q}[x]$ be an irreducible polynomial of degree 4 and suppose K is its splitting field over \mathbf{Q}. Suppose $p(x)$ has exactly two real roots, then show that the Galois group, $\operatorname{Gal}(E / \mathbf{Q})$ cannot be A_{4}, the alternating group.
7. Let E be the splitting field of the polynomial $f(x)=x^{p}-x-a \in \mathbf{F}_{p}[x]$, where p is prime and $a \neq 0$ is an element of \mathbf{F}_{p}. Show that $f(x)$ is irreducible by showing that if $\alpha \in E$ is a root of $f(x)$, then so is $\alpha+1$. Use this fact to also show that $\operatorname{Gal}\left(E / \mathbf{F}_{p}\right) \cong \mathbf{Z} / p$.
8. Let $\zeta=e^{2 \pi i / 7}$ denote a primitive 7-th root of unity and let $K=\mathbf{Q}(\zeta)$ be the associated cyclotomic field extension with Galois $\operatorname{group} \operatorname{Gal}(K / \mathbf{Q})$. Let $\alpha=\zeta+\zeta^{2}+\zeta^{4} \in K$.
(a) Describe explicitly a generator of the Galois group $\operatorname{Gal}(K / \mathbf{Q})$.
(b) Show that $[\mathbf{Q}(\alpha): \mathbf{Q}]=2$.
