Topology Qualifying Exam
 January 10th, 2014

Name:

Instructions: Provide justification for each of your answers and make your arguments clear, but try to avoid excessive detail. Complete any $\mathbf{7}$ out of $\mathbf{8}$ for full credit.

1. Show that the closed interval $[0,1] \subseteq \mathbf{R}$ is compact in the usual Euclidean topology of \mathbf{R} (where the open sets are generated by all open intervals). Do this by showing directly that every open cover has a finite sub-cover.
2. Let $\mathbf{T}^{2}=S^{1} \times S^{1}$ denote the 2-dimensional torus. Let $X=\mathbf{T}^{2} \vee S^{1}$ denote the space that is the wedge of the torus and the circle. Describe all 3 -fold covering spaces of X. Explain which of these are regular coverings.
3. Let $G=\operatorname{SL}_{2}(\mathbf{R})$ denote the group of 2×2 matrices with real entries and determinant 1, i.e.,

$$
\mathrm{SL}_{2}(\mathbf{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbf{R}, \quad a d-b c=1\right\}
$$

Let $X \subseteq \mathbf{C}$ denote the upper half place, i.e., $X=\{z=x+i y: y>0\}$ with the induced topology. Define an action of G on X as follows: every $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$ yields a homeomorphism of X : $g \cdot z:=\frac{a z+b}{c z+d}$
(a) Is this action effective? Prove that it is effective or describe the kernel.
(b) Show that the action of G is transitive and find the isotropy group at $z=i$.
(c) Let $\Gamma \subseteq G$ be the subgroup, $\Gamma=\mathrm{SL}_{2}(\mathbf{Z})$, i.e., the subgroup of matrices of G all of whose entries are integers. It is known (i.e., you don't have to prove) that Γ is generated by the elements $S=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right), \quad T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. What is the geometric effect of S^{k}, T^{m} on X, where $k, m \in \mathbf{Z}$?
4. Let \mathbf{R}^{ω} denote the space that is product of countably many copies of \mathbf{R} endowed with the product topology. Let $X \subseteq \mathbf{R}^{\omega}$ denote the subspace consisting of points have only finitely many non-zero coordinates. Show that X is path connected.
5. Let $\mathbf{D}^{2}=\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2} \leqslant 1\right\}$ denote the closed unit disk. Suppose X is a topological space such that there is a covering map $\rho: \mathbf{D}^{2} \rightarrow X$. Identify the space X up to homeomorphism giving good reasons for your conclusion.
6. Let $X \subseteq \mathbf{R}^{3}$ denote the space that is the union,

$$
\mathbf{S}^{2} \cup(\{0\} \times\{0\} \times[-1,1])=\left\{(x, y, z) \in \mathbf{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\} \cup\left\{(0,0, z) \in \mathbf{R}^{3}:-1 \leqslant z \leqslant 1\right\}
$$

Compute the fundamental group of X.
7. Prove or construct a counterexample: Suppose X is a topological space such that $X=A \cup B$, where A is open and contractible, B is closed and contractible and $A \cap B$ is contractible. Then X is also contractible.
8. Suppose $g: \mathbf{S}^{2} \rightarrow \mathbf{S}^{2}$ is a continuous map from the 2-sphere to itself such that $g(-x) \neq g(x)$ for all $x \in \mathbf{S}^{2}$. Show that g must be surjective. Is there a map $f: \mathbf{S}^{2} \rightarrow \mathbf{S}^{2}$ that is surjective and such that $f(-x)=f(x)$ for some $x \in \mathbf{S}^{2}$? Explain your answer.

