Qualifying examination in analysis January 2014

1. Suppose (X, Σ, μ) is a measure space, and f is a measurable function on X with the property that for every measurable set $A \subseteq X$, if $\mu(A)>0$ then $\int_{A} f d \mu \geq 0$. Prove that $f \geq 0$ a.e. on X.
2. (a) Suppose μ is a finite Borel measure on $\mathbf{R}, x_{0} \in \mathbf{R}$, and $\left\{x_{n}\right\}$ is a decreasing sequence of numbers such that $\lim _{n \rightarrow \infty} x_{n}=x_{0}$. Show that

$$
\lim _{n \rightarrow \infty} \mu\left(\left(-\infty, x_{n}\right]\right)=\mu\left(\left(-\infty, x_{0}\right]\right)
$$

(b) Give an example of a finite Borel measure μ on \mathbf{R}, a number $x_{0} \in \mathbf{R}$, and an increasing sequence of numbers $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} x_{n}=x_{0}$, and

$$
\lim _{n \rightarrow \infty} \mu\left(\left(-\infty, x_{n}\right]\right) \neq \mu\left(\left(-\infty, x_{0}\right]\right)
$$

3. Suppose $\left\{f_{n}\right\}$ is a sequence of Lebesgue integrable functions on $[0,1]$, and suppose f_{n} converges pointwise almost everywhere to a function f on $[0,1]$. Suppose also that for every measurable subset E of $[0,1]$ and every $n \in \mathbf{N}$, we have

$$
\int_{E}\left|f_{n}(x)\right| d x \leq m(E)
$$

Prove that f is integrable on $[0,1]$ and

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n} d x=\int_{0}^{1} f d x
$$

4. Suppose f_{n} is a sequence of Lebesgue integrable functions on $[0,1]$, and $\left|f_{n}(x)\right| \leq 1$ for all $x \in[0,1]$ and all $n \in \mathbf{N}$. Show that if f_{n} converges in measure to zero, then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)\right| d x=0
$$

(Recall that we say f_{n} converges in measure to a function f on a set E if, for every $\eta>0$,

$$
\left.\lim _{n \rightarrow \infty} m\left\{x \in E:\left|f_{n}(x)-f(x)\right| \geq \eta\right\}=0 .\right)
$$

5. Suppose (X, Σ, μ) is a measure space, and $f \in L^{p}(X, \mu)$, where $1 \leq p<\infty$. Show that

$$
\lim _{t \rightarrow \infty} t^{p} \mu(\{x \in X:|f(x)|>t\})=0
$$

6. Suppose f is absolutely continuous on $[0,1], f(0)=0$, and $f^{\prime}(x)$ is in $L^{2}[0,1]$. Show that

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{\sqrt{x}}=0
$$

7. Suppose Λ is a bounded linear functional on $L^{2}(\mathbf{R})$, and $\left\{\phi_{n}\right\}$ is an orthonormal sequence in $L^{2}(\mathbf{R})$. Show that $\lim _{n \rightarrow \infty} \Lambda\left(\phi_{n}\right)=0$.
8. In the measure space $(\mathbf{R}, \mathcal{M})$, where \mathcal{M} is the Lebesgue σ-algebra, let λ denote Lebesgue measure and define measures μ and ν by $\mu(E)=\int_{E} f d \lambda$ and $\nu(E)=g d \lambda$, where

$$
f(x)=\left\{\begin{array}{ll}
x+1 & (x \geq-1) \\
0 & (x<-1)
\end{array} \quad \text { and } \quad g(x)= \begin{cases}x^{2} & (x \geq 0) \\
0 & (x<0)\end{cases}\right.
$$

Find, with proof, measures ν_{1} and ν_{2} such that $\nu=\nu_{1}+\nu_{2}, \nu_{1}$ is absolutely continuous with respect to μ, and ν_{2} is singular with respect to μ.
9. For $f \in L^{2}(\mathbf{R})$, define the function $T f(x)$ on \mathbf{R} by

$$
T f(x)=\int_{0}^{1} f(x+y) d y
$$

Show that $T f \in L^{2}(\mathbf{R})$, with $\|T f\|_{2} \leq\|f\|_{2}$. (Here $\|\cdot\|_{2}$ denotes the norm in $L^{2}(\mathbf{R})$.)

