Solve as many of the eight problems as you can. It is not necessary to solve everything in order to pass the exam.

- 1) Prove that if a group G has order $p^e a$, where p is a prime, $e \ge 1$, and $1 \le a < p$, then G has a proper, normal subgroup, except when a = e = 1.
- 2) Show that every group of order 15 is cyclic.
- 3) Let p be an odd prime number. Let ζ be a primitive p-th root of unity in \mathbb{C} .
 - a) Show that, for each divisor n of p-1, the extension $\mathbb{Q}(\zeta)/\mathbb{Q}$ admits a unique intermediate extension of degree n over \mathbb{Q} .
 - b) Show that the intermediate extension K of $\mathbb{Q}(\zeta)/\mathbb{Q}$ of degree $\frac{p-1}{2}$ is given by $K = \mathbb{Q}(\eta)$, where $\eta = \zeta + \zeta^{p-1}$.
- 4) Let E/K be a field extension of characteristic p > 0. Let α be a root in E of an irreducible polynomial $f(x) = x^p x a \in K[x]$.
 - a) Prove that $\alpha + 1$ is also a root of f.
 - b) Prove that the Galois group of f over K is cyclic of order p.
- 5) Let R be the ring $\mathbb{Z}[\sqrt{2}]$.
 - a) Give an example for an odd prime number p that is no longer a prime when considered as an element of R.
 - b) Give an example for an odd prime number p that remains a prime when considered as an element of R.
- 6) Let V_1, V_2, W_1, W_2 be vector spaces over a field K. Let $f: V_1 \to V_2$ and $g: W_1 \to W_2$ be linear maps. Using the universal property of the tensor product, construct a natural map

$$f \otimes g: V_1 \otimes W_1 \longrightarrow V_2 \otimes W_2.$$

- 7) Let K be a field.
 - a) Let E be an integral domain containing K. Assume that E, as a K-vector space, is finite-dimensional. Show that E is a field.
 - b) Let $f \in K[X]$ be an irreducible polynomial, and let α be a root of f in some algebraic closure of K. Show, using part a), that $K(\alpha) = K[\alpha]$.
- 8) Let R be a commutative ring with 1. Let I, J be ideals in R with I + J = R.
 - a) Prove that $IJ = I \cap J$.
 - b) Prove the Chinese Remainder Theorem: For any pair $a, b \in R$, there exists $x \in R$ with $x \equiv a \mod I$ and $x \equiv b \mod J$.
 - c) Assume that IJ = 0. Prove that $R \cong (R/I) \times (R/J)$.