Algebra Qualifying Exam

Solve as many of the eight problems as you can. It is not necessary to solve everything in order to pass the exam.

1) Prove that if a group G has order $p^{e} a$, where p is a prime, $e \geq 1$, and $1 \leq a<p$, then G has a proper, normal subgroup, except when $a=e=1$.
2) Show that every group of order 15 is cyclic.
3) Let p be an odd prime number. Let ζ be a primitive p-th root of unity in \mathbb{C}.
a) Show that, for each divisor n of $p-1$, the extension $\mathbb{Q}(\zeta) / \mathbb{Q}$ admits a unique intermediate extension of degree n over \mathbb{Q}.
b) Show that the intermediate extension K of $\mathbb{Q}(\zeta) / \mathbb{Q}$ of degree $\frac{p-1}{2}$ is given by $K=\mathbb{Q}(\eta)$, where $\eta=\zeta+\zeta^{p-1}$.
4) Let E / K be a field extension of characteristic $p>0$. Let α be a root in E of an irreducible polynomial $f(x)=x^{p}-x-a \in K[x]$.
a) Prove that $\alpha+1$ is also a root of f.
b) Prove that the Galois group of f over K is cyclic of order p.
5) Let R be the ring $\mathbb{Z}[\sqrt{2}]$.
a) Give an example for an odd prime number p that is no longer a prime when considered as an element of R.
b) Give an example for an odd prime number p that remains a prime when considered as an element of R.
6) Let $V_{1}, V_{2}, W_{1}, W_{2}$ be vector spaces over a field K. Let $f: V_{1} \rightarrow V_{2}$ and $g: W_{1} \rightarrow W_{2}$ be linear maps. Using the universal property of the tensor product, construct a natural map

$$
f \otimes g: V_{1} \otimes W_{1} \longrightarrow V_{2} \otimes W_{2}
$$

7) Let K be a field.
a) Let E be an integral domain containing K. Assume that E, as a K-vector space, is finite-dimensional. Show that E is a field.
b) Let $f \in K[X]$ be an irreducible polynomial, and let α be a root of f in some algebraic closure of K. Show, using part a), that $K(\alpha)=K[\alpha]$.
8) Let R be a commutative ring with 1 . Let I, J be ideals in R with $I+J=R$.
a) Prove that $I J=I \cap J$.
b) Prove the Chinese Remainder Theorem: For any pair $a, b \in R$, there exists $x \in R$ with $x \equiv a \bmod I$ and $x \equiv b \bmod J$.
c) Assume that $I J=0$. Prove that $R \cong(R / I) \times(R / J)$.
