Algebra PhD Qualifying Examination - August 2012

1. Let G be a finite group and let H be a subgroup of G such that $[G: H]=2$. Suppose K is a subgroup of G of odd order. Show that K is contained in H.
2. Let G be a finite group such that $|G|=p^{2} q$, where p, q are primes such that $p<q$. Show that either G has a normal subgroup of order q or $|G|=12$.
3. Let $R=\mathbb{Z}[\sqrt{-m}]=\{x+y \sqrt{-m}: x, y \in \mathbb{Z}\}$, where m is an odd, square-free integer such that $m \geq 3$.
(a) Find all the units in R.
(b) Show that 2 and $1+\sqrt{-m}$ are irreducible in R.
(c) Show that R is not a Unique Factorization Domain.
(It might be useful to use the norm function on R)
4. Let R be a commutative ring with unity 1 . Let J be the intersection of all maximal ideals of R. Show that $1+J:=\{1+x: x \in J\}$ is a subgroup of the group of units of R. (You may use the fact that every non-trivial ideal of R is contained in a maximal ideal)
5. Let $R=\mathbb{Z}$ and let

$$
S=\left\{3^{r} \mid r \in \mathbb{Z}_{\geq 0}\right\}
$$

(a) Show that S is a multiplicatively closed subset of R.
(b) Define $S^{-1} R$, including the binary operations which make it into a ring.
(c) Is $S^{-1} R$ a field? Please prove or disprove.
6. Let K be the splitting field of $x^{4}-x^{2}-3$ over \mathbb{Q}.
(a) Determine the Galois group of K over \mathbb{Q}.
(b) Determine the subgroup lattice of the Galois Group.
(c) Determine the lattice of intermediate fields between \mathbb{Q} and K.
7. Let R be a ring with unity 1 and let M be a unital left R-module. We will write r. m for the action of the element $r \in R$ on the element $m \in M$. Let A and B be submodules of M.
(a) Prove that

$$
A+B:=\{a+b \mid a \in A, b \in B\}
$$

is a submodule of M.
(b) Prove that

$$
A \times B:=\{(a, b) \mid a \in A, b \in B\}
$$

is a unital left R-module via the action given by

$$
r .(a, b)=(r . a, r . b)
$$

for all $r \in R$, all $a \in A$, and all $b \in B$.
(c) Prove that the map

$$
\varphi: A \times B \rightarrow A+B
$$

given by $\varphi(a, b)=a+b$ is an R-module isomorphism if and only if $A \cap B=\{0\}$.
8. (a) Let

$$
A=\mathbb{Z} / 3 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 4 \mathbb{Z}
$$

As abelian groups, A is isomorphic to which group? Please prove.
(b) Let

$$
B=\mathbb{Z} / 3 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 3 \mathbb{Z}
$$

As abelian groups, B is isomorphic to which group? Please prove.
(c) If m, n are positive integers and $d=\operatorname{gcd}(m, n)$, then prove that as abelian groups we have

$$
\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} / d \mathbb{Z}
$$

(It may be useful to prove that $\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}$ is a cyclic group generated by the element $\overline{1} \otimes \overline{1}$ and that the order of this element must divide d.)

