Algebra PhD Qualifying Examination - August 2011

Please write neat and clear solutions to the following problems, showing all relevant work. Note that all rings are associative with 1 and that all modules are unital.

- 1. Prove or disprove:
 - a) For a group G and subgroups H and K, if [G : H] and [G : K] are finite then $[G : H \cap K]$ is also finite.
 - b) If N is a normal subgroup of G with N and G/N cyclic then G is a nilpotent group.
 - c) Any group of order $5p^k$ (p prime) is solvable.
- 2. Prove:
 - a) The symmetric group S_n is generated by the transpositions $(12), (13), \ldots, (1n)$.
 - b) The alternating group A_n si generated by the 3-cycles $(123), (124), \ldots, (12n)$.
- 3. Show that there is no simple group of order 120.
- 4. Prove that any group of order 175 is abelian. Find all groups of order 175 up to isomorphism.
- 5. Prove or disprove:
 - a) Every ring contains a maximal ideal.
 - b) In a commutative ring, if a divides b and b divides a then a = ub for some unit u.
 - c) The left $M_n(D)$ -module D^n of $n \times 1$ column vectors is simple when D is a division ring.
- 6. Show that if M is a finitely generated module over a Noetherian ring and $\phi: M \to M$ is an epimorphism, then ϕ is an automorphism.
- 7. Prove that if I and J are ideals of a commutative ring R with I + J = R then R/IJ is isomorphic to $R/I \times R/J$.
- 8. Describe all $q = p^n$ (in terms of congruence conditions on p and n) for which $x^2 + 1$ is irreducible over the finite field with q elements.

9. Prove:

- a) If G is a finite abelian noncyclic group then there is a positive integer k < |G| such that $g^k = 1$ for all $g \in G$.
- b) A nonzero polynomial f in F[X] has at most deg(f) roots. (F is a field.)

- c) Any finite multiplicative subgroup of a field is cyclic.
- 10. If E is the splitting field over \mathbb{Q} of $x^p + 2$ in \mathbb{C} (p a prime) show: a) $E = \mathbb{Q}(e^{2\pi i/p}, -2^{1/p}).$
 - b) $\operatorname{Gal}(E/\mathbb{Q}(e^{2\pi i/p}))$ and $\operatorname{Gal}(E/\mathbb{Q}(-2^{1/p}))$ are cyclic.
 - c) $\operatorname{Gal}(E/\mathbb{Q})$ is isomorphic to the product of the cyclic groups in b).