Attempt all questions.

- $\mathbf{Q1.}$ (a) Define what it means for a topological space to be *compact*.
 - (b) Define what it means for a topological space to be *Hausdorff*.
 - (c) What can you conclude about a continuous bijection from a compact space to a Hausdorff space? (no proof necessary)
 - (d) Give the definition of the quotient topology.
 - (e) The group \mathbb{Z}^2 acts on \mathbb{R}^2 by (vector) translations. Give a detailed proof that the space $\mathbb{R}^2/\mathbb{Z}^2$ with the quotient topology obtained from the standard topology on \mathbb{R}^2 is homeomorphic to the product space $S^1 \times S^1$. Here $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ inherits the subspace topology from the standard topology on \mathbb{R}^2 . Identify (by name or brief statements) the results that you use in your proof.
- **Q2.** (a) Define what it means for a topological space to be *locally compact*.
 - (b) Let X be a locally compact, Hausdorff space. Define the *one point compactification* \widehat{X} of X. Describe the topology on \widehat{X} in detail (you do not have to prove that it is a topology).
 - (c) Prove that the topology described above on \widehat{X} is compact.
 - (d) Prove that the subspace topology on X inherited from the topology on \widehat{X} agrees with the original topology on X.
 - (e) Give a proof of or provide a counterexample to the following statement. "If X and Y are path-connected, locally compact, Hausdorff spaces such that $\pi_1(X) = \pi_1(Y)$, then $\pi_1(\widehat{X}) = \pi_1(\widehat{Y})$ where \widehat{X} (resp. \widehat{Y}) is the one-point compactification of X (resp. Y)."
- Q3. [True/False] Please supply short reasons for your answers. Either name a theorem/result or provide a counterexample as appropriate.
 - (a) A quotient space of a path-connected space is path-connected.
 - (b) A quotient space of a simply connected space is simply connected.
 - (c) The subspace topology on the Hawaiian Earring, $\bigcup_{n=1}^{\infty} \{(x,y) \mid (x-\frac{1}{n})^2 + y^2 = \frac{1}{n^2} \}$, inherited from the standard topology on \mathbb{R}^2 is finer than the CW topology on $\bigvee_{n=1}^{\infty} S^1$.
 - (d) $\overline{S_{\Omega}}$ is not metrizable because it is not first countable.
 - (e) \mathbb{R}^{ω} with the product topology is path connected.
 - (f) Every second countable, T_3 space embeds into \mathbb{R}^{ω} (with the product topology).
 - (g) A metric space is compact if and only if it is sequentially compact.

Q4. Let H be the subgroup of $F_2 = F_{\{a,b\}}$ generated by $\{a^2, b^2, ba^2b\}$.

- (a) Draw the based covering space, $(\widehat{X}, \widehat{x}_0) \to (X, x_0)$, of the wedge of circles, $X = S_a^1 \vee S_b^1$, corresponding to the subgroup $H < F_{\{a,b\}}$.
- (b) What is the index $[F_{\{a,b\}}:H]$?
- (c) What is the rank of H?
- (d) Is $b^3 a^2 \in H$?
- (e) Determine the group $\operatorname{Aut}(\widehat{X} \to X)$.
- (f) Determine the group $N_{F_{\{a,b\}}}(H)$.
- (g) Draw the covering space of $X = S_a^1 \vee S_b^1$ corresponding to $N_{F_{\{a,b\}}}(H)$.
- (h) Is $N_{F_{\{a,b\}}}(H) \lhd F_{\{a,b\}}$?

Q5. Use covering spaces to describe the kernel of the homomorphism

$$\phi: \langle a \mid a^2 \rangle * \langle b \mid b^5 \rangle \rightarrow \langle a \mid a^2 \rangle \times \langle b \mid b^5 \rangle$$

defined by $a \mapsto a, b \mapsto b$. Follow the steps below.

- (a) Construct a presentation 2-complex, X, for $\langle a | a^2 \rangle * \langle b | b^5 \rangle$ and a presentation 2-complex, Y, for $\langle a | a^2 \rangle \times \langle b | b^5 \rangle$. Do this in such a way that the inclusion $i: X \hookrightarrow Y$ induces the homomorphism ϕ .
- (b) Describe the universal covering space $\widetilde{Y} \to Y$, and use this to determine a covering space $\widehat{X} \to X$ corresponding to $\ker(\phi)$.
- (c) Describe $\ker(\phi)$ as an abstract group.
- (d) Describe an explicit set of generators for $\ker(\phi)$ (i.e., as a subgroup of $\mathbb{Z}_2 * \mathbb{Z}_5$).

Q6. (a) Let X be the cell complex obtained by attaching the following 2-cell to the wedge of two circles, $S_a^1 \vee S_t^1$. Use van Kampen's theorem to compute $\pi_1(X)$.

- (b) Describe the universal covering space \widetilde{X} of X.
- (c) Use \widetilde{X} to prove that $\pi_1(X)$ is not an abelian group.
- (d) Is there a retraction from X to S_t^1 ? Construct an explicit retraction (quoting whatever theorems from general topology that may be necessary to perform the construction), or prove that none exists.
- (e) Is there a retraction from X to S_a^1 ? Construct an explicit retraction (quoting whatever theorems from general topology that may be necessary to perform the construction), or prove that none exists.